
HUMAN-ALIGNED HIGH-FIDELITY 3D SHAPE EVALUATION AND HAND

RECONSTRUCTION

by

Tianyu Luan

April 2025

A dissertation submitted to the

Faculty of the Graduate School of

the University at Buffalo, State University of New York

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

Department of Computer Science and Engineering



Copyright by

Tianyu Luan

2025

ii



Acknowledgments

First, I want to express my deepest gratitude to my family—my wife, Manqing, and my

parents. Pursuing a PhD in a foreign country has been a personal journey, but it also placed

considerable challenge on my family. I am truly thankful for their support, which allowed

me to follow my dreams. Throughout my PhD studies, their love and encouragement have

been my driving force, and I feel incredibly lucky to have such support and blessing.

I would also like to thank my collaborators—Zhongpai, Ziyan, Terrence, Zhong, Yi,

Luyuan, Haoxiang, and Xuan. You witnessed my growth from a novice researcher to

someone with much more confidence and experience in research today. Without your

collaboration and help, I would not have achieved what I have. It has been an honor to work

alongside you.

My thanks to my labmates—Sheng, Liangchen, Jialian, Lin, Sudhir, Yuanhao, Nan,

Zixin, and Xuelu. You have given me both research support and daily companionship.

You’ve become an irreplaceable part of my PhD journey rather than just my PhD research. I

will miss our lunch and dinner chats about research and gossip, and I hope we can continue

sharing those lunches and dinners and conversations in the future.

I am deeply grateful to my committee members: Prof. Chen Wang, Prof. Kenneth

Joseph, and Prof. Ying Wu. Thank you for taking time from your busy schedules to serve

on my committee and offering your invaluable advice. Your insights and feedback have

given me fresh perspectives and inspiring ideas not only to my thesis, but also to my future

research.

iii



Finally, I want to thank my advisor, Prof. Junsong Yuan. I truly believe he is the best

advisor in the world. Before working with Prof. Yuan, I thought that if an advisor could

provide (a) detailed research guidance, (b) big-picture direction and high-level advice, (c)

freedom to explore my own interests, or (d) room to make mistakes along with emotional

support, any one of these would make for a very good advisor. However, Prof. Yuan has

done all of the above and more, which makes him the best mentor a junior researcher like

me could imagine. If I ever have the chance to become a professor or a team leader in the

future, I hope I can be someone like him.

iv



Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 High-fidelity Reconstruction . . . . . . . . . . . . . . . . . . . . . 6

3 Disertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Fidelity Dataset and Metric . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Fully-supervised High-fidelity Hand Reconstruction . . . . . . . . . 7
3.3 Self-supervised High-fidelity Hand Reconstruction . . . . . . . . . 8

2 Human-aligned Fidelity Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Mesh spectrum analysis . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Spectrum AUC Difference . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Human-adjusted Spectrum AUC Difference . . . . . . . . . . . . . 18
3.5 Discretization of Spectrum AUC Difference . . . . . . . . . . . . . 18
3.6 Discretization of Human-adjusted SAUCD . . . . . . . . . . . . . . 20

4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Dataset Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Human Scoring Procedure Overview . . . . . . . . . . . . . . . . . 23
4.3 Swiss System Tournament for Human Scoring . . . . . . . . . . . . 24

v



4.4 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Dataset Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Human-adjusted SAUCD Training . . . . . . . . . . . . . . . . . . 28
5.5 Quantitive and Qualitative Results . . . . . . . . . . . . . . . . . . 28

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Fully-supervised High-fidelity Hand Reconstruction . . . . . . . . . . . . . . 38

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 High-fidelity 3D Hand Model . . . . . . . . . . . . . . . . . . . . 46
3.2 Hierachical Graph Convolution Network . . . . . . . . . . . . . . . 47
3.3 Graph Frequency Decomposition . . . . . . . . . . . . . . . . . . . 48
3.4 Image-Graph Ring Frequency Mapping . . . . . . . . . . . . . . . 50
3.5 Frequency Decomposition Loss . . . . . . . . . . . . . . . . . . . 54

4 Datasets and Annotation Generation . . . . . . . . . . . . . . . . 56
4.1 High-fidelity Hand Dataset . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Topology-correct Annotation Generation . . . . . . . . . . . . . . . 57

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Self-supervised High-fidelity Hand Reconstruction . . . . . . . . . . . . . . . 71

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Fully-supervised High-fidelity Hand Reconstruction . . . . . 76
3.1 Coarse Hand Reconstruction . . . . . . . . . . . . . . . . . . . . . 77
3.2 Detail Enhancement Network . . . . . . . . . . . . . . . . . . . . . 78
3.3 Differentiable Rendering . . . . . . . . . . . . . . . . . . . . . . . 79
3.4 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5 Training and Inference . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



4.1 Training Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 HandScan Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Quantitive and Qualitative Results . . . . . . . . . . . . . . . . . . 86

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendix A A Counterexample of the Original Cotan Formula not being Posi-
tive Semidefinite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Appendix B Proof of Positive-semidefiniteness of Revised Cotan Formula . . . 96

Appendix C Proof of SAUCD Satisfies Metric Definition in Spectrum Domain . 98

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vii



List of Tables

2.1 Correlations between different metrics and human annotation. “SAUCD” is
our basic version metric. “Adjusted SAUCD” is the human-adjusted version
of our metric. The ranges of all three correlation coefficients are [−1, 1],
and the higher the better. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Dataset statistics and error analysis. . . . . . . . . . . . . . . . . . . . . . 22

2.3 Results when building metrics using each frequency band separately. The
bottom row is our proposed metric. . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Results with different pruning portions. The metric achieves better results
with pruning portion to be 0.1% or 1%. We use pruning portion as 0.1% in
our design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Module replacement. We replace each module of our metric with alternative
designs to verify the design of each module. . . . . . . . . . . . . . . . . . 31

2.6 Distortions in our provided Shape Grading dataset. . . . . . . . . . . . . . 36

3.1 Joint and mesh errors (Chamfer distance) of topology-correct mesh annota-
tions of 3 resolution levels on InterHand2.6M. For joint error and Chamfer
distance, lower is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Module effectiveness Results on the InterHand2.6M [91] dataset. Bold
number means the best. For MPJPE and Chamfer distance (CD), lower is
better. For MSNR, higher is better. The proposed method improves the
accuracy of hand surface details compared to previous methods and our
conference version (Conf-level 1-3). While our method generates better
shape details in a scalable manner, the general accuracy (MPJPE and CD)
of overall shape also increases. . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



3.3 Ablation study on the feature skip connection design, new registration
strategy, and the effect of loss functions. Bold number means the best. The
2nd-4th lines show the effectiveness of our Image-Graph Ring Frequency
Mapping (IGRFM). The 5th line shows the result of using the previous
registration from the conference version. The 6th and 7th lines show the
effectiveness of our loss functions. . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Quantitative results of removing high-frequency features in IGRFM. We
remove the high-frequency features and retain 10% and 1% of the lowest-
frequency features in IGRFM frequency rings, and show 3 levels of the
quantitative results comparison. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Comparison of different IGRFM ring segmentation strategies. From top to
bottom: Radius(proposed method): Keeping the radius difference between
adjacent rings to be the same. Area: Keeping the same area difference
between adjacent rings. Graph frequency: Keeping the radius difference to
be the same as the graph frequency Λ in Eq. (3.7). Square root of graph
frequency: Keeping the radius difference to be the same as the square root
of graph frequency. Random segmentation: Randomly segment the image
frequency band. Our results show that our proposed radius segmentation
has the best MSNR result. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 The mesh sizes and the resources needed for generating different resolution
levels of meshes for both our proposed method and conference version.
We observe that despite our performance exceeding that of our conference
version, the computational costs barely increase. . . . . . . . . . . . . . . . 68

4.1 HandScan and 11k Hands dataset attributes. Compared with 11k Hands
covers more subjects, HandScan provides high-resolution 3D scans for 16
subjects with 3D scanned shape ground-truth and MANO registration. . . . 84

4.2 SOTA comparison of our result with previous works. We evaluate the hand’s
general shape using Chamfer Distance (CD) and the details fidelity using
FSNR [17]. As shown in the table below, our methods outperform SOTA
methods, especially in detail measurements. We also report the average
inference time. For CD and Inference Time, a lower number means better
performance. For FSNR, the higher the number, the better the performance.
The inference time is measured on a single NVIDIA A40 GPU. . . . . . . 84

4.3 We do an ablation study on the fast inference part of our method. The result
demonstrates the importance of each loss term. Removing any single loss,
including perceptual loss, Laplacian loss, silhouette loss, and frequency
loss, it degrades our method’s reconstruction performance, underscoring its
contribution to the final result. . . . . . . . . . . . . . . . . . . . . . . . . 85

ix



List of Figures

1.1 The motivation of acquiring high-fidelity in 3D virtual world. . . . . . . . 2

1.2 An example of how previous spatial domain 3D shape metrics (Chamfer
Distance [13] and UHD [14]) deviate from human evaluation. We create
Mesh A by adding a small pose error to the ground truth mesh, and by
applying a large smoothing kernel to ground truth, we create Mesh B.
Contrary to human perception, previous spatial domain metrics evaluate
Mesh B better than Mesh A. This indicates that while they are sensitive
to general shape differences, they tend to overlook high-frequency details.
Note that different metrics use different units of measurement. . . . . . . . 4

2.1 Our SAUCD metric is designed as follows: A. We use mesh Fourier Trans-
form to analyze the spectrums of test and ground truth mesh. B. We compare
the difference between two spectrum curves by calculating the Area Under
the Curve (AUC) difference. C. We further extend our metric by multiplying
the AUC difference with a learnable weight to capture human sensitivity in
each frequency band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Variables defined in our discrete Laplace-Beltrami operator design. . . . . . 14

2.3 Spectrum Area Under the Curve Difference. We design our metric using the
AUC difference of the spectrums. The blue curve and red curve are the test
and ground truth mesh spectrum, respectively. The purple area in the last
graph is the Spectrum AUC Difference. Please find details in Sec. 3.3. . . . 14

2.4 Objects in our provided Shape Grading dataset and what the object numbers
correspond to in Tab. 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Examples of distorted meshes of different distortion levels in our provided
Shape Grading dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

x



2.6 The panel of our online user study system. The instruction on the left
contains simple instructions for the subjects. On the right side of the page,
the top two videos are rendered from distorted meshes. The lower video is
rendered from groundtruth mesh. . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 An example of mesh spectrum curve: We do mesh Fourier transform on
the “Origin” mesh and show the spectrum in the left graph. The λ-axis is
the eigenvalues of the DLBO matrix, the larger the higher frequency. We
also show how mesh changes when gradually removing high-frequency
information (mesh A to G). The frequency bands of the meshes are shown
as the colored arrows in the left graph. . . . . . . . . . . . . . . . . . . . . 26

2.8 Learned spectrum weights on all 12 folds. The name of colorful thin lines
means the test object name of that fold. The bold purple line is the average
weights of all folds. We also show some examples of mesh shape information
in different frequency bands. Frequency band A is [0, 0.0075), B is [0, 0.03),
and C is [0, 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Counterintuitive low-frequencies information if some of the mesh frequen-
cies are negative. We can see if we remove the high-frequency part of the
mesh (resulting in “Filtered mesh 1” and “Filtered mesh 2”) using the orig-
inal Cotan formula, the mesh’s low-frequency parts show artifacts (sharp
shapes). The red circles show the artifacts in the left object. The right object
shows a case when these artifacts occur much more often. These artifacts
do not occur using our revised Cotan formula DLBO. . . . . . . . . . . . . 30

2.10 We Adapt SAUCD into a loss function and use it in monocular-image-based
3D hand reconstruction. From left to right: input images, reconstruction
result w/o SAUCD loss, reconstruction result w/ SAUCD loss, and ground
truth mesh. We can see that the enhancement of SAUCD loss in mesh details
is clearly noticeable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 AUC normalization. We normalize the spectrum of origin mesh with factor
s = 2. The blue curve is the resulting curve. We transform the blue curve
back to s = 2 scaled mesh. As we see on the right side, the mesh’s general
shape is kept the same, but the scales increased to twice the size of the
original mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.12 Pair-wise distortion type comparisons. s is the percentage difference of the
inverse-order pairs compared to groundtruth. Blue color means s is larger
than 0, which shows that our metric is better than compared metric among
the meshes of distortion pair (d1, d2). Red color means s is smaller than 0,
which means the compared metric is better. . . . . . . . . . . . . . . . . . 33

2.13 Network architecture used when adapting SAUCD to training loss. . . . . . 34

xi



2.14 Failure cases. We show a case in which our metric does not provide accurate
evaluations aligned with the human evaluation. . . . . . . . . . . . . . . . 34

2.15 Examples in our dataset and their evaluation results using different metrics.
↓ means lower is better. ↑ means higher is better. For each object, the mesh
on the top-left is the groundtruth mesh, and the rest meshes are distorted
meshes. The table below the meshes contains the scores they get from
different metrics or from our user study. As shown in the figure, our metric
aligns better with user study scores and human perception. . . . . . . . . . 37

3.1 An exemplar hand mesh with sufficient details and its graph frequency
decomposition. The x-axis shows frequency components from low to high.
The y-axis shows the amplitude of each component on a logarithm scale.
At the frequency domain, the signal amplitude generally decreases as the
frequency increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 To map the image features to graph features, previous methods use a simple
pooling strategy (first row) or a projection-interpolation strategy (second
row), but the detailed high-frequency features would be easily damaged by
pooling or small projection errors. In this paper, we propose an Image-Graph
Ring Frequency Mapping (IGRFM) (third row) to map the image features
to the graph features via the frequency domain. . . . . . . . . . . . . . . . 41

3.3 An example of the topology error of a scanned hand mesh. The red part
on the top-right is the missing or ambiguous topology. To better train
our network, we use a bidirectional registration strategy to generate valid
ground-truth meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 We design our scalable hand modeling network in a U-net manner. First,
we generate a MANO mesh from image features (light gray block). Then,
based on the MANO mesh, we use a multilevel GCN to recover 3 levels
of personalized meshes (green blocks from shallow to dark). In order to
obtain high-frequency hand details, we use Image-Graph Ring Frequency
Mapping (IGRFM) skip-connected image features (yellow blocks) from
different layers of the backbone network as parts of the GCN input. At
inference, our network can stop at any resolution level, but still provides
reasonable high-fidelity results at that resolution. . . . . . . . . . . . . . . 45

3.5 We design a new high-fidelity hand mesh with 12, 337 vertices. Our new
model inherits the advantages of the parametric hand model and provides
reliable 3D shape estimation with fewer flaws when hand poses change. . . 48

xii



3.6 Frequency decomposition of a 3D hand mesh. Cumulative frequency com-
ponents start from frequency 0. The range shows the frequency band. For
example, [0,20] means the signal of the first 21 frequencies (lowest 21)
added together. We can see how the mesh shape changes when we gradually
add higher frequency signals to the hand mesh. In general, the hand details
increase as higher frequency signals are included. . . . . . . . . . . . . . . 51

3.7 We use Image-Graph Ring Frequency Mapping (IGRFM) to map image
features to graph features through frequency. (a) Input image spatial feature
map. (b) Image frequency feature after Fast Fourier Transform (FFT). (c)
Frequency feature rings. The inner rings are low-frequency features and the
outer rings are high-frequency features. (d) Graph frequency features after
ring average pooling. (e) Graph spatial features transformed from graph
frequency features using Graph Inverse Fourier Transform (Graph IFT). . . 52

3.8 Example of Topology-correct hand mesh registration. (a) Scanned mesh
with topology flaws (red circle). (b) We use an optimization-based coarse
pose registration to get the coarse pose. (c) We then use bidirectional vertex
picking to get the topology-correct part of mesh vertices. (d) We finally use
3D Poisson editing to inpaint the topology-incorrect part of the mesh vertices. 55

3.9 Evaluations using Euclidean distance and MSNR under different noise
amplitudes in every frequency band. Each line of a different color indicates
a frequency band. The maximum and minimum frequencies are shown in
the legend. On each line, every dot means adding a random amplitude noise
to the mesh. The noise amplitude of each dot is evenly distributed over the
ranges shown on the x-axis. The result validates that Euclidean distance is
more sensitive to error in low-frequency bands, and MSNR is more sensitive
to noise in high-frequency bands. Thus, compared to Euclidean distance,
MSNR can better measure the errors in high-frequency details. . . . . . . . 56

3.10 We show examples of Noisy Meshes. The meshes from left to right are
meshes with a noise maximum amplitude of 0.6 and the frequency band
changed from [60,119] to [7680,12336]. For easier visualization, we mag-
nify the vertices location changes by a factor of 5. . . . . . . . . . . . . . . 57

3.11 Visualized comparison with the conference version. We compare our results
with those of our conference version. Our results have better high-fidelity
details (first row). Moreover, our proposed method can solve some failure
cases of the previous conference version (second row). . . . . . . . . . . . 64

xiii



3.12 Visualization results of “w/o frequency decomposition loss” and ”w/o per-
vertex error loss” in Sec. 5.3. As shown, if we do not use frequency de-
composition loss, the mesh result we get tends to be smoother with fewer
personalized details. If we do not use the per-vertex error loss, the mesh’s
low-frequency information is not well learned. The mesh we generate
exhibits overall shape deformation. . . . . . . . . . . . . . . . . . . . . . . 65

3.13 Visualized results of removing high-frequency features in IGRFM. (Best
viewed at magnification.) We remove the high-frequency feature rings and
retain 10% and 1% of the lowest-frequency features in IGRFM frequency
rings, and show the highest-resolution visualized results comparison. As
shown in the figure, removing the high-frequency feature rings will cause a
loss of the shape details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.14 Comparison of registered mesh annotations. For each case, the left meshes
are our conference version results, and the meshes on the right are our
proposed registration method results. We can observe some topology flaws
in the conference version results (abnormal triangle faces in the red circles),
while our proposed registration does not have such flaws. . . . . . . . . . . 67

3.15 Qualitative reconstruction results. The columns, from left to right, are input
images, our level 1-3 output meshes, MANO mesh, MANO mesh subdivided
to 200k vertices (i.e. the same number of vertices as our mesh), and the
ground-truth, respectively. We can see that even if we upsample MANO
into the same number of vertices as our mesh, it still does not provide
personalized details comparable to our results. . . . . . . . . . . . . . . . 69

4.1 (a) Existing high-fidelity 3D hand reconstruction methods typically rely on
specialized 3D scan ground-truth data, which require expensive hardware,
time-consuming procedures, and controlled environments. (b) Our self-
supervised approach reconstructs high-fidelity 3D hands directly from image
inputs, leveraging general shape and detail priors without requiring 3D
annotations. This method reduces reliance on specialized 3D-scanned data
and broadens applicability across diverse subjects. . . . . . . . . . . . . . . 72

4.2 Overview of our self-supervised pipeline for high-fidelity 3D hand recon-
struction. From a single RGB image, we obtain a coarse MANO [146]-based
mesh, subdivide it for higher resolution, and refine it with per-vertex dis-
placements predicted by a detail enhancement network. A differentiable
renderer projects the refined mesh for image-space supervision using multi-
ple loss terms (e.g., perceptual lperc, silhouette lsil, Laplacian color lcolor and
normal lnormal, frequency-based lfreq). This framework allows end-to-end
training without requiring 3D ground-truth scans. . . . . . . . . . . . . . . 75

xiv



4.3 Example data of 11k Hands (a) and our benchmark HandScan (b). For
HandScan, the top row is the input images, and the bottom row is the hand
scan data. As shown in the figure, our dataset scanning has good hand shape
details for evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Example of decomposing a hand mesh into different frequency bands. We
accumulate frequency components from low to high, resulting in 12 hand
meshes (M1 to M12). The boundary between low and high frequencies is
marked at K, roughly between M9 and M10. The central figure illustrates
the overall frequency decomposition of the hand shape. . . . . . . . . . . . 87

4.5 Visualization of the normal maps (2nd column from the left), general shape
mesh, and 2D keypoints (3rd column from the left) used in our method. In
the third column, green dots represent 2D keypoints from an off-the-shelf
estimator, while red dots are the projections of 3D hand joints. We can
observe the details and general shape alignment of the details provided by
the normal map and general shape provided by conventional hand mesh
reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 We visualize our results for both fast inference (a) and direct inference (b) on
HandScan. For direct inference, we also visualize our results on 11k hands
(bottom row). As shown in the figure, our result has a better detail shape
and fidelity than the baseline approach for both fast inference approach and
direct inference approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.1 A simple mesh example to show that the original Cotan formula does not
guarantee to be positive semidefinite. . . . . . . . . . . . . . . . . . . . . . 93

xv



Abstract

Augmented Reality (AR) and Virtual Reality (VR) technologies have rapidly advanced

in diverse fields, from education and remote work to retail and entertainment, offering

immersive experiences that boost user engagement, collaboration, and overall satisfaction.

Central to these immersive experiences is the concept of fidelity, which profoundly influ-

ences users’ sense of immersion, presence, co-presence, and emotional responses. Despite

growing interest in creating high-fidelity 3D environments, there remains a pressing need for

standardized methods to evaluate fidelity in a way that accurately reflects human perception.

Traditional geometric metrics, such as Chamfer Distance, often fail to capture nuanced visual

differences, especially those tied to local details that humans readily discern, underscoring

the importance of robust, human-aligned fidelity measures.

In this disertation, we address this gap through a comprehensive approach encompassing

both data collection and method development. First, we introduce our user study benchmark

dataset, Shape Grading, which compiles human-assigned quality scores for a broad range

of distorted 3D meshes. Spanning twelve ground-truth objects and incorporating seven

common distortion types, each with four levels of severity, our dataset contains 1,008 short

video renderings, offering a rich resource for understanding how people perceive realism in

synthetic 3D content. By analyzing the correlation between these human evaluations and

various automated metrics, we present valuable insights into the strengths and weaknesses

of current fidelity assessment approaches, thereby clarifying how well they mirror genuine

human perception.
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Building on these findings, we propose a novel analytic metric, Spectrum Area Under

the Curve Difference (SAUCD), to more effectively gauge fidelity. Our method transforms

3D meshes into the spectrum domain via the discrete Laplace-Beltrami operator and Fourier

transform, ensuring that both global structure and finer surface details receive appropriate

emphasis. We further refine this metric by learning frequency-specific weights to align

closely with human judgment, improving correlations between algorithmic outputs and

subjective evaluations. This metric therefore provides a practical yet powerful tool for both

researchers and practitioners aiming to create high-fidelity 3D objects.

To demonstrate the real-world applicability of these ideas, we present two high-fidelity

reconstruction pipelines on human hand reconstruction, one fully supervised and one self-

supervised. In the fully supervised setting, our frequency-split network reconstructs hand

meshes in a coarse-to-fine manner, preserving both overall shape and intricate detail. In

contrast, our self-supervised framework (FlipFlop) tackles the inherent data-collection

challenges by requiring only two RGB images (front and back views) for training, yet still

recovers textured, high-frequency hand geometry. Both methods demonstrate the advantages

of explicitly modeling high-frequency information, markedly improving realism in 3D hand

reconstruction tasks.

Overall, this dissertation lays a foundational framework for understanding, measuring,

and generating high-fidelity 3D worlds. By combining large-scale human perception studies

with a spectrum-domain metric and specialized reconstruction techniques, we offer a holistic

approach that addresses the core challenge of realism in AR/VR. In doing so, we pave the

way for more immersive virtual experiences, advancing education, remote collaboration,

interactive entertainment, and beyond.

xvii



Chapter 1

Introduction

1 Background

Augmented Reality (AR) and Virtual Reality (VR) technologies have shown their vast

potential across various domains. In education, VR enables immersive learning environments

that enhance students’ comprehension and memory through virtual field trips and scientific

experiments. For remote work, VR is used to replicate office settings, allowing team

members to engage in face-to-face meetings and collaborative efforts in virtual spaces,

thus boosting communication efficiency and team bonds. In retail, AR allows consumers

to try on clothing or visualize how furniture will look in their homes before purchasing,

using smartphones or specialized glasses. Moreover, VR is employed in the real estate

sector to offer virtual tours of properties, enabling potential buyers to remotely explore and

experience the layout of homes. Finally, AR and VR are popular in the entertainment and

gaming industries, providing unparalleled gaming experiences and interactive opportunities.

In AR & VR applications, fidelity is a hard-to-evaluate yet crucial factor. Previous works

show evidence that high fidelity enhances user immersion, presence, and co-presence, and

hence brings emotional impact on the user such as emotional arousal, enhancement, and

emotional interaction.
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Figure 1.1: The motivation of acquiring high-fidelity in 3D virtual world.

Fidelity, immersion, and emotional arousal. In psychology, immersion is defined as the

degree to which an individual feels absorbed by or engrossed in a particular experience [1].

For immersions, experiments in [2] found that looking at the unrealistic scene significantly

lowers the immersion feeling score of the subjects compared with looking at the realistic

scene. Subsequently, the sense of immersion also impacts people’s emotional arousal. Very

recent research [3] analyze previous works including [4, 5, 6, 7, 8] and found that higher

immersions of nature exposure would significantly decrease the arousal of fatigue in the

subjects.

Fidelity, presence, and emotional enhancement. Presence is defined as an experience

of being in one place or environment, even when one is physically situated in another [1]

(sometimes also called situated immersion). [9] proposed a framework named Servotte-

Ghuysen framework to analyze the sense of presence. In the Servotte-Ghuysen framework,

fidelity serves as a crucial system factor for users to have a sense of presence, and a

high-fidelity environment can enhance users’ sense of presence. Research on VR-related

psychology also found that the sense of presence enhances the intensity of people’s emotional

feelings. For instance, [10] shows that the intensity of the subjects’ happiness feeling shows

a positive correlation with the sense of presence in a relaxing environment, and a negative
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correlation with the sense of presence in an anxious environment, while the intensity of the

subjects’ anxious and sadness gives the opposite results.

Fidelity, co-presence and emotional interaction. Co-presence exists when people

sense that they are able to perceive others and that others are able to actively perceive

them [11] found the sense of co-presence increases when the level of realism increases.

The relation between co-presence and emotional interaction is not evidently clear yet. In

psychology, people would empirically use human interaction behavior to measure the sense

of co-presence, such as in [12]. Thus, it is highly possible that the co-presence would

strongly affects the emotional interaction among people.

Although fidelity is so important for people’s engagement in the VR-world and human-

human connection, existing research on high-fidelity 3D worlds remains at a trivial ex-

ploratory stage. High-fidelity mesh reconstruction is a widely studied direction, and signifi-

cant efforts have been made to enhance the details of 3D meshes. But we cannot answer if

these efforts truly enhanced fidelity. These works lack rigorous standards to demonstrate

whether they have indeed enhanced fidelity. Their evaluations rely on traditional metrics

based on L2 distance, such as chamfer distance, and visualization. These evaluation stan-

dards have clear flaws when assessing realism. For instance, Figure 1 shows an example

concerning chamfer distance, illustrating the misalignment between this metric and human

perception of fidelity. Specifically, when we remove the wrinkles from the ground truth

mesh (resulting in Mesh B), the errors detected by previous metrics are not as significant

as when we slightly change the pose of the hand (Mesh A). However, humans tend to

sense a significant difference between ground truth and Mesh B, but barely recognize the

difference between ground truth and Mesh A. Other previous works evaluated the results

through visualization. These measurements may vary for different people, failing to capture

a statistical understanding of the realism perceived by the population, that is, how realistic

their results appear to the entire population. Moreover, visualizing a few results does not

reflect the method’s performance, especially since most of these methods do not claim to
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Ground truth mesh A. Mesh w/ pose error B. Mesh w/ smoothing error

Chamfer Distance:

Mesh B has smaller error

Mesh A Mesh B

Error

1.35

0.40

UHD:

Mesh B has smaller error

Mesh A Mesh B

4.96

2.65

SAUCD (Ours):

Mesh A has smaller error

Mesh A Mesh B

0.75

1.71

Figure 1.2: An example of how previous spatial domain 3D shape metrics (Chamfer
Distance [13] and UHD [14]) deviate from human evaluation. We create Mesh A by adding
a small pose error to the ground truth mesh, and by applying a large smoothing kernel to
ground truth, we create Mesh B. Contrary to human perception, previous spatial domain
metrics evaluate Mesh B better than Mesh A. This indicates that while they are sensitive to
general shape differences, they tend to overlook high-frequency details. Note that different
metrics use different units of measurement.

be randomly selected. These issues are not only present in the 3D reconstruction field. As

generative AI evolves, the demand for generating high-fidelity 3D worlds is increasing, and

more attempts are being made to produce high-fidelity works, yet no one has answered what

fidelity is, how to measure fidelity, and what methods can truly reconstruct and generate

fidelity.

We are trying to address these challenges. Initially, we discovered that human perception

of fidelity follows predictable patterns. Various papers have studied human sensations

of realism and immersion, revealing statistical consistencies in these perceptions. [15]
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found that the fidelity scores a group of subjects have on a certain object or behavior have

an obvious consistency. For most objects, the standard derivation of scoring distribution

would be less than 1 on a scoring scale of 1 to 5. This consistency among subjects enables

us to model human’s sense of fidelity. Specifically, it is necessary to collect data on

people’s reactions to various 3D objects and scenes first. Based on this data, we then

plan to establish a standard for assessing fidelity—a standard that reflects the statistical

expectation of evaluations from the entire dataset, not just individual responses. With this

established standard, we would further utilize it as a loss function to pursue high-fidelity 3D

reconstruction and generation. The detailed contribution can be found in Sec. 3.

2 Problem Formulation

2.1 Fidelity

Fidelity is a personalized concept. The fidelity of the same object can be different in different

people’s eyes. Thus, the mathematical definition of fidelity must be based on the statistical

result of a group of people’s opinions. Thus, in our research, we defined the fidelity of a 3D

shape as:

Fr(x, x0) = Es∈Sfr(x, x0; s), (1.1)

where x0 is the reference shape and x is the input shape. In this dissertation, we represent

the 3D shapes in terms of 3D mesh. S is a collection of subjects. Fr(·) and fr(·) are the

fidelity of subject set S and subject s, respectively. Fr(·) and fr(·) are both the lower the

better.

To build a fidelity metric, we need to design a function to fit Fr(x, x0) in Eq. (1.1) as

F̂r(x, x0) = argmin
F̂ ′
r

Σx(F̂
′
r(x, x0)− Fr(x, x0))

2, (1.2)
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where F̂r(·) is the fitting function of Fr(·). In practice, F̂r(·) could be designed as an

analytic-based function or a neural network.

2.2 High-fidelity Reconstruction

In high-fidelity reconstruction, we aim to reconstruct a 3D shape that has lower fidelity to

the real ground-truth shape. Specifically, high-fidelity reconstruction can be defined as:

x̂r = argmin
x

F̂r(x, x0), x = R(I), (1.3)

where x̂r is the high-fidelity reconstructed shape, R(·) is a reconstruction function, which

is typically and neural network. x0 is the ground-truth shape. Similar to Sec. 2.1, we also

represent the 3D shapes in terms of 3D mesh here. I is the input, which could be an image,

a coarse shape, or other input data structures. Other variables are defined the same as in

Eq. (1.1).

3 Disertation Overview

This dissertation includes the following four parts: a human-aligned fidelity dataset and

metric, fully-supervised high-fidelity hand reconstruction, and self-supervised high-fidelity

hand reconstruction. The overview of each part is as follows:

3.1 Fidelity Dataset and Metric

1Existing 3D mesh shape evaluation metrics mainly focus on the overall shape but are usually

less sensitive to local details. This makes them inconsistent with human evaluation, as human

perception cares about both overall and detailed shape. In this paper, we propose an analytic

metric named Spectrum Area Under the Curve Difference (SAUCD) that demonstrates better

1This chapter is published in [16].
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consistency with human evaluation. To compare the difference between two mesh shapes,

we first transform the 3D mesh to the spectrum domain using the discrete Laplace-Beltrami

operator and Fourier transform. Then, we calculate the Area Under the Curve (AUC)

difference between the two spectrums, so that each frequency band that captures either the

overall or detailed shape is equitably considered. Taking human sensitivity across frequency

bands into account, we further extend our metric by learning suitable weights for each

frequency band which better aligns with human perception. To measure the performance of

SAUCD, we build a 3D mesh evaluation dataset called Shape Grading, along with manual

annotations from more than 800 subjects. By measuring the correlation between our metric

and human evaluation, we demonstrate that SAUCD is well aligned with human evaluation,

and outperforms previous 3D mesh metrics

3.2 Fully-supervised High-fidelity Hand Reconstruction

2Despite the impressive performance obtained by recent single-image hand modeling tech-

niques, they lack the capability to capture sufficient details of the 3D hand mesh. This

deficiency greatly limits their applications when high-fidelity hand modeling is required, e.g.,

personalized hand modeling. To address this problem, we design a frequency split network

to generate 3D hand meshes using different frequency bands in a coarse-to-fine manner. To

capture high-frequency personalized details, we transform the 3D mesh into the frequency

domain, and proposed a novel frequency decomposition loss to supervise each frequency

component. By leveraging such a coarse-to-fine scheme, hand details that correspond to the

higher frequency domain can be preserved. In addition, the proposed network is scalable,

and can stop the inference at any resolution level to accommodate different hardware with

varying computational powers. To feed the scalable frequency network with frequency split

image features, we proposed an image-graph ring feature mapping strategy. To train our

network with per-vertex supervision, we use a bidirectional registration strategy to generate

2This chapter is published in [17].

7



a topology-fixed ground-truth. To quantitatively evaluate the performance of our method in

terms of recovering personalized shape details, we introduce a new evaluation metric named

Mean-frequency Signal-to-Noise Ratio (MSNR) to measure the mean signal-to-noise ratio

of mesh signal on each frequency component. Extensive experiments demonstrate that our

approach generates fine-grained details for high-fidelity 3D hand reconstruction, and our

evaluation metric is more effective than traditional metrics for measuring mesh details.

3.3 Self-supervised High-fidelity Hand Reconstruction

High-fidelity 3D hand reconstruction is essential for immersive AR/VR applications, where

users strongly prefer realistic hand representations over simplified meshes. However, ac-

quiring detailed 3D hand data remains challenging, typically requiring complex, expensive

equipment that severely limits dataset diversity and scalability. To address these limi-

tations, we propose FlipFlop, a novel self-supervised method that reconstructs textured,

high-fidelity 3D hands using only two RGB images (front and back views) without requir-

ing any 3D ground-truth annotations. Our approach seamlessly integrates both general

shape information and fine details by combining priors from off-the-shelf models through a

frequency-based regulation loss. We also introduce a color regulation loss that encourages

the model to represent appearance variations through geometric surface changes rather than

merely altering color values. For practical deployment, we offer two complementary work-

flows: a direct inference pipeline requiring no prior training, and a fast inference approach

that delivers quick results after pre-training. To evaluate hand reconstruction quality, we

introduce a new benchmark dataset where FlipFlop demonstrates superior performance

compared to state-of-the-art methods, particularly in capturing fine surface details while

maintaining accurate overall hand structure.

8



Chapter 2

Human-aligned Fidelity Metric

1 Introduction

With the recent progress of 3D reconstruction and processing techniques, 3D mesh shapes

have increasing applications in fields such as video games, industrial design, 3D printing,

etc. In these applications, assessing the visual quality of the 3D mesh shape is a crucial

task. To meet the requirements of various applications, a promising evaluation metric should

not only reflect the geometry measurement but also align with human visual perception.

Considering that human beings perceive 3D meshes in both overall shape and local details,

it is a challenging task to find an evaluation metric that can align well with humans.

Previous metrics have the following disadvantages in this scenario. Traditional spatial

domain measurements such as Chamfer Distance [13] which calculates the mean distance

between a vertex on one mesh and its nearest vertex on the other mesh, can accurately

measure the spatial distance. However, it does not guarantee capturing all shape details.

In fact, such measurements in the spatial domain often overlook finer shape details, as the

details tend to get overwhelmed by the overall shape. Fig. 1.2 illustrates the discrepancy

between spatial measurements and human evaluation as mesh details change. Specifically,

When we remove the wrinkles from the ground truth mesh (resulting in Mesh B), the errors
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detected by previous metrics are not as significant as when we slightly change the pose

of the hand (Mesh A). However, humans tend to sense a significant difference between

ground truth and Mesh B, but barely recognize the difference between ground truth and

Mesh A. To mitigate this problem, previous works propose learning-based approaches, such

as Single Shape Fréchet Inception Distance (SSFID) [18] based on learnable features from

3D shape. They compare the difference between the test mesh and the ground truth mesh

in the latent feature space, and the design is expected to better align human perception.

However, such learning-based methods would require a large amount of data to train the

network. Their accuracy and generalizability are limited by the size of the dataset, data

distribution, and annotation quality, not to mention the potential bias in collecting human

perception feedback, which could mislead the learned metrics. An analytic metric that can

better explain the shape difference is thus preferred.

To address the above limitations, we design an analytic-based 3D shape evaluation metric

named Spectrum Area Under the Curve Difference (SAUCD). Our metric measures mesh

shape differences with a balanced consideration of both overall and detailed shape, making

it better aligned with human evaluation. To allow our metric to capture detail variations,

we leverage the 3D shape spectrum to decompose different levels of shape details from the

overall shape, with details corresponding to higher-frequency components. The advantage of

transforming the shape signal into the spectrum domain is that the high-frequency details are

explicitly separated from the low-frequency overall shape. Therefore, it provides appropriate

consideration to the information in different frequency bands, not just the low-frequency

information of the overall shape in the dominant place. Thus, the details that human

perception cares about will be better represented. Besides, the frequency analysis method

allows the metric to be mostly analytic and better explained.

We design SAUCD following the above inspiration. To begin with, both the test mesh

and the ground truth mesh are transformed from the spatial to the spectrum domain using the

discrete Laplace-Beltrami operator (DLBO), which encodes the mesh geometry information
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into a semidefinite Laplacian matrix. Once in the spectrum domain, we compare the regions

under the two spectrums. Our Spectrum Area Under the Curve Difference metric is defined

as the area of the non-overlapping region under the two spectrums – a larger area indicates

a greater difference. Moreover, to better align with human evaluation, we further extend

our design by learning a spectrum weight for SAUCD. However, different from previous

learning-based approaches that use deep networks, large datasets, and extensive learning

processes, our learning-based method requires the training of a weight vector. This vector

measures the sensitivity of human perception across frequency bands, making the learned

metric better aligned with human perception. We then evaluated the effectiveness of SAUCD

on our provided user study benchmark dataset named Shape Grading. Using Shape Grading,

we compare our metrics with previous metrics by calculating the correlation between each

metric and human scoring.

In summary, our contributions are listed as follows.

• We design an analytic-based 3D mesh shape metric named Spectrum AUC Difference

(SAUCD), which evaluates the difference between a 3D mesh and its ground truth

mesh. Our metric considers both the overall shape and intricate details, to align more

closely with human perception.

• We further extend our design to a learnable metric. The extended metric explores the

human perception sensitivity in different frequency bands, which further improves

this metric.

Our experiments show that both SAUCD and its extended version outperform previous

methods with good generalizability to different types of objects.

2 Related Works

Metrics in 3D mesh reconstruction. Chamfer Distance [13] is a popular metric used

in 3D mesh reconstruction tasks such as those in [19, 20, 21, 22, 23, 24, 25, 26]. Other
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Figure 2.1: Our SAUCD metric is designed as follows: A. We use mesh Fourier Transform
to analyze the spectrums of test and ground truth mesh. B. We compare the difference
between two spectrum curves by calculating the Area Under the Curve (AUC) difference. C.
We further extend our metric by multiplying the AUC difference with a learnable weight to
capture human sensitivity in each frequency band.

spatial domain metrics, such as 3D Intersection over Union (IoU) in [27, 28, 29, 30, 31,

32]. F-score in [33, 34, 35, 36], and Unidirectional Hausdorff distance (UHD) in [14] are

commonly focused on the geometry accuracy of mesh shapes. These metrics can provide

accurate geometry measurements, but they are not designed to align with human evaluation.

Deep-learning-based methods such as Single Shape Fréchet Inception Distance [18] are

also used in 3D reconstruction. While these metrics have the capacity to adapt from human

evaluation, they are more like black boxes, with performances subject to dataset size and

annotation bias. Moreover, most previous works miss out on user study validation to verify

if their metrics align with human evaluation.

3D shape generation metrics. Multiple metrics have been used in 3D shape generation,

such as Minimal Matching Distance (MMD) [37], Jensen-Shannon Divergence (JSD) [38],

Total Mutual Difference (TMD) [14], Fréchet Pointcloud Distance (FPD) [39], etc.. These

metrics are designed to measure the differences between the generated distributions, while

our task is to build a metric to compare the shape of two meshes.

3D mesh compression and watermarking metrics. Previous works [40, 41, 42,

43] focused on evaluating mesh errors in mesh compression and watermarking. Since

compression and watermarking pursue mesh errors that cannot be detected by humans, they
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mainly focus on barely noticed errors. However, our task is to build a metric that can handle

generally occurring errors that happen in 3D reconstruction tasks and applications.

3 Proposed Method

Our task is to design a metric aligned with human evaluation to measure the shape difference

between a test triangle mesh and its corresponding ground truth triangle mesh. Specifically,

given a test mesh M̂ and its ground truth mesh Mgt, Spectrum AUC Difference (SAUCD)

can be abstracted as

d = D(M̂,Mgt). (2.1)

d is the distance between the test and the ground truth mesh. In this section, we will elaborate

on how the distance function D(·) is designed.

3.1 Overview

As shown in Fig. 2.1, our metric is calculated via the following steps: First, we use mesh

Fourier transform to analyze the spectrums of the test and ground truth mesh (in Sec. 3.2).

Then we leverage each frequency band by calculating the Area Under the Curve (AUC)

difference of the spectrum curves (in Sec. 3.3). Moreover, we further extended our metric

by multiplying the AUC difference with a learnable weight to capture the human sensitivity

on each frequency band (in Sec. 3.4). We will discuss each step in detail.

3.2 Mesh spectrum analysis

In order to capture the overall shape as well as shape details, we choose to decompose the

mesh signal into a spectrum. Considering the mesh as a function on a discretized manifold

space, we can calculate the spectrum using the manifold space Fourier transform. In Hilbert

space, the Fourier operator is defined as the eigenfunctions of the Laplacian operator [44].
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The same definition and similar theories are extended to continuous and discrete manifold

space by [45, 46]. The Laplacian operator on discrete manifold spaces, i.e. mesh space in

our task, is named the Discrete Laplace-Beltrami operator (DLBO). Similar to the Laplacian

operator in image space that encodes the pixel information by capturing the local pixel

differences [47, 48, 49, 50, 51, 52], DLBO encodes the mesh shape information by capturing

the local shape fluctuation. The “Cotan formula” defined in [53] is the most widely used

discretization, which can be represented in matrix form as

Lij =


∑

j∈N(i)
1

2Ai
(cotαij + cot βij), i = j

− 1
2Ai

(cotαij + cot βij), i ̸= j ∧ j ∈ N(i)

0, i ̸= j ∧ j /∈ N(i),

(2.2)
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where L ∈ RN×N is the DLBO matrix, with N the vertex number of the mesh. Lij indicates

its entry in ith row and jth column, which represents the edge weight between vertex vi

and vj . Ai is the mixed Voronoi area of vertex vi on the mesh. As shown in Fig. 2.2, the

vi’s mixed Voronoi area is defined as the area of the polygon in which the vertices are the

circumcenters of vi’s surrounding faces. N(i) is the index set of vi’s adjacent vertices. If

vi and vj are adjacent, αij and βij are the opposite angles of edge (vi, vj) in each of the

edge’s two neighbor triangle faces, respectively (shown in Fig. 2.2). If not, αij and βij

are not defined and Lij is 0. As shown in Fig. 2.1, the DLBO matrix is used for mesh

Fourier transform to get mesh spectrum. We calculate the Fourier operator U⊤, which is the

eigenfunction of L as

L = UΛU⊤, (2.3)

where Λ is a diagonal matrix whose diagonal elements are Fourier mesh frequencies.

To ensure the mesh frequencies are non-negative, we need the DLBO matrix L to be

positive semidefinite. Our experiment in Fig. 2.9 gives an example of the counterintuitive

results when there are negative frequencies. However, the Cotan formula in Eq. (2.2) does

not guarantee to be positive semidefinite. We provide a simple example in Chapter A in

which L is not positive semidefinite when the mesh is not Delaunay triangulated and the

mixed Voronoi areas are not all equal to each other. In our metric design, we made two small

changes to the original Cotan formula to make it positive semidefinite. a) Inspired by the

symmetric normalization of the topology Laplacian matrix in [54], we make L symmetric

by changing the normalization parameter Ai into a symmetric normalized manner A
1
2
i A

1
2
j . b)

We replace cotαij + cot βij with | cotαij + cot βij|. This ensures all the edge weights in

the Laplacian matrix to be non-negative. Thus, our revision of DLBO is defined as

Lij =


1
2

∑
j∈N(i) A

− 1
2

i A
− 1

2
j | cotαij + cot βij|, i = j

−1
2
A

− 1
2

i A
− 1

2
j | cotαij + cot βij|, i ̸= j ∧ j ∈ N(i)

0, i ̸= j ∧ j /∈ N(i).

(2.4)
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We prove that our revision of the Cotan formula is positive semidefinite in Chapter B. In

Tab. 2.5, our experiments show that our DLBO matrix design outperforms the origin Cotan

formula in [53], and the topology Laplacian matrix defined in [54].

Finally, we obtain the mesh spectrum by acting Fourier operator on the mesh vertices

Fi =
√

G2
i,x +G2

i,y +G2
i,z, G = U⊤v, (2.5)

where v ∈ RN×3 indicates the 3D coordinates of N mesh vertices. The result spectrum

F ∈ RN . Fig. 2.7 shows an example of the mesh spectrum (left side) and how the meshes

look in different frequency bands (right side). This provides an illustration of the information

contained in different frequency bands of the mesh spectrum.

3.3 Spectrum AUC Difference

To reduce the noise and normalize the mesh scale, we also design noise pruning and AUC

normalization procedures before calculating the Spectrum AUC Difference.

Noise pruning. As shown in Fig. 2.3 process (a), we prune a small portion of the highest

frequency information to reduce the interference of noise. From the observation of the first

two meshes (A and B) in Fig. 2.7, we can see that humans can barely notice the shape

differences when the highest frequency parts are removed. Thus, if we try to evaluate the

mesh shape that aligns with human perception, it is reasonable to remove high-frequency

noise without losing much information that humans care about. Empirically, we choose to

prune the highest 0.1% frequency information as noise. Our experiments in Tab. 2.4 show

that this portion is more consistent with human perception while preserving good mesh

quality.

AUC normalization. Given a spectrum F (λ), its Area Under the Curve (AUC) can be

defined as
∫
∞ F (λ)dλ. AUC normalization means using spectrum AUC to normalize the

mesh scale. If the mesh scale increases by s times in length, the mixed Voronoi area, i.e. Ai
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in Eq. (2.4), will decrease by s2 times. Thus, each element in the DLBO matrix L will also

decrease by s2 times. Then, according to Eq. (2.3), the frequency λ will decrease s2 times

to λ/s2, and according to Eq. (2.5), the spectrum amplitude F will change to sF because v

is increased by s time and U⊤ is still orthonormal. Then the area under the spectrum curve

(the area boxed with red or blue lines in Fig. 2.3) changes as A′ =
∫
sF (λ)dλ/s2 = 1

s
A.

In our approach, we normalize the area under the spectrum curve A to 1 to resolve the

scale difference, which means s = A, λ decreases by A2 times, and spectrum amplitude F

increases by A times (Fig. 2.3 process (b)). AUC normalization fairly normalizes the scale

of objects in different shapes by only changing the scale, not shape details. It normalizes

the spectrum AUC of all mesh to 1, making the mesh spectrums differ only in distributions.

Our experiments in Tab. 2.5 demonstrate this design can bring a fairer comparison of

the spectrums and improve the human consistency of the metric. The experiment also

demonstrates that this design outperforms the spatial domain scale normalization.

Spectrum AUC Difference. In order to capture the difference between two mesh shapes

in the spectrum domain, we design Spectrum AUC Difference (SAUCD) on the spectrum

analysis results after noise pruning and AUC normalization:

d = D(M̂,Mgt) =

∫
λ

|F̂ (λ)− Fgt(λ)|dλ, (2.6)

where F̂ and Fgt are the test and groundtruth mesh spectrum. As shown in Fig. 2.3 process

(c), our metric is defined as the AUC difference of the two spectrum curves (the purple area).

In Tab. 2.5, we compare our design with an alternative design which changes the amplitude

difference |F̂ (λ) − Fgt(λ)| to energy difference |F̂ (λ)2 − Fgt(λ)
2|. The result shows our

design is more consistent with human evaluation. Besides, experiments in Tab. 2.1 show our

SAUCD metric aligns well with human evaluation, and outperforms SOTA metrics under

multiple evaluation methods. Experiments in Fig. 2.10 show SAUCD has the capability to

improve mesh detail qualities in 3D reconstruction when adapted into training loss.
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3.4 Human-adjusted Spectrum AUC Difference

We also provide an extended metric version, in which we design a learnable weight parameter

along the frequency bands. The weight parameter indicates the adjustment of human

sensitivity to each frequency band. Specifically, we design the extended metric as

dw = Dw(M̂,Mgt) =

∫
λ

w(λ)|F̂ (λ)− Fgt(λ)|dλ. (2.7)

w(λ) is weight parameters indicating human sensitivity along frequency bands. Our training

loss is defined as

L = λpLplcc + λsrLsrocc + λrLregu, (2.8)

where Lplcc and Lsrocc are Pearson correlation loss and Spearman rank order loss. They are

defined the same as Pearson’s linear correlation [55] and Spearman’s rank order correla-

tion [56]. Lregu = 1/N
∑

i(wi − 1)2 is the regularization loss, which regularizes weight wi

close to 1. λp, λsr, and λr are the loss weights of Lplcc, Lsrocc, and Lregu. Our experiments

in Sec. 5.5 show that after adjustment, the consistency between our metric output and

human-annotated ground truth is improved.

3.5 Discretization of Spectrum AUC Difference

Our Spectrum AUC Difference (SAUCD) is defined in Eq. (2.7) as

d = D(M̂,Mgt) =

∫
λ

|F̂ (λ)− Fgt(λ)|dλ, (2.9)

where F̂ (λ) and Fgt(λ) are the test and groundtruth mesh spectrum, respectively. To

discretize Eq. (2.6) in the experiments, we let {λ̂i} to be the discretized frequencies of F̂ (λ)

and {λgt,i} to be the discretized frequencies of Fgt(λ). We sort the two sets {λ̂i} and {λgt,i}

into one array from low to high, resulting in a sorted array {λi} with Ngt + N̂ frequencies,
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where Ngt is the vertex number of the groundtruth mesh and N̂ is the vertex number of

the test mesh. The Ngt + N̂ frequencies discretize Eq. (2.6) into the sum of the area of

Ngt + N̂ − 1 segments as:

d =

Ngt+N̂−1∑
i=1

si, (2.10)

where the area of each segment

si =


1
2
|Hi +Hi−1|(λi − λi−1), HiHi−1 ≥ 0

H2
i +H2

i−1

2|Hi+Hi−1|(λi − λi−1), HiHi−1 < 0,
(2.11)

is either a trapezoid when HiHi−1 ≥ 0 or two triangles when HiHi−1 < 0. Here,

Hi = F̂ (λi)− Fgt(λi) (2.12)

is the amplitude difference between F̂ (λ) and Fgt(λ) at λi. If λi is originally from the test

mesh spectrum, then

F̂ (λi) = F̂ (λ̂i), (2.13)

and Fgt(λi) is calculated using interpolation as

Fgt(λi) =
(λgt,i+ − λi)Fgt(λgt,i+) + (λi − λgt,i−)Fgt(λgt,i−)

λgt,i+ − λgt,i−
, (2.14)

where λgt,i− and λgt,i+ are the left and right nearest frequencies of λi in the groundtruch

frequency set {λgt,i}. Similarly, if λi is originally from the groundtruth mesh spectrum, then

Fgt(λi) = Fgt(λgt,i), (2.15)

and F̂ (λi) is calculated using interpolation as

F̂ (λi) =
(λ̂i+ − λi)F̂ (λ̂i+) + (λi − λ̂i−)F̂ (λ̂i−)

λ̂i+ − λ̂i−
, (2.16)
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where λ̂i− and λ̂i+ are the left and right nearest frequencies of λi in the test frequency set

{λ̂i}.

In summary, to calculate the area of the region between the two curves (i.e. AUC

difference), we first sort the frequencies from the test and groundtruth spectrum in one

array, and interpolate the test and groundtruth spectrum using the frequencies from the

other spectrum. Then, we calculate each AUC difference in the range between two adjacent

frequencies and add them together. When HiHi−1 ≥ 0, the region between the two curves is

a trapezoid; when HiHi−1 < 0 the region is two triangles and we calculate the sum area of

the two triangles. Finally, the sum of the areas between adjacent frequencies is our Spectrum

AUC Difference metric.

3.6 Discretization of Human-adjusted SAUCD

Our Human-adjusted SAUCD is defined in Eq. (2.8) as

d = D(M̂,Mgt) =

∫
λ

w(λ)|F̂ (λ)− Fgt(λ)|dλ. (2.17)

Similar to SAUCD discretization, Human-adjusted SAUCD can be discretized as

d =

Ngt+N̂−1∑
i=1

wisi, (2.18)

where si is defined the same as in Eq. (2.10), and wi is the human-adjusted weight at λi in

Eq. (2.11). Since the weight vector w we use is only 20-dimensional to avoid overfitting,

we get each wi by interpolating w at each λi. Specifically, the 20 elements of w represent

the weights at frequencies uniformly distributed in the range from 0 to 0.05. We denote

those 20 frequencies as {λw,k} on which the weights w are explicitly defined, which

means 0 ≤ k < 20, λw,0 = 0, and λw,19 = 0.05. The last frequency location 0.05

is picked empirically. Note that we use a revised version of Discrete Laplace-Beltrami
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Metrics
Object No.

1 2 3 4 5 6 7 8 9 10 11 12 Overall

Chamfer Distance [13] 0.54 0.15 -0.10 0.57 -0.06 -0.12 -0.20 0.07 0.04 0.30 -0.20 0.17 0.097
Point-to-Surface 0.45 0.19 -0.04 0.66 -0.08 -0.25 -0.32 -0.20 0.01 0.13 -0.21 -0.12 0.017
Normal Difference 0.46 0.11 0.06 0.28 0.11 0.21 0.29 0.47 0.27 0.39 0.11 0.27 0.253
IoU [30] 0.60 0.63 0.01 0.51 0.30 0.02 -0.07 0.20 0.14 0.47 -0.09 -0.01 0.225
F-score [33] 0.58 0.09 0.05 0.33 0.03 0.06 0.16 0.34 0.27 0.25 0.01 0.34 0.208
SSFID [18] 0.71 0.74 -0.04 0.74 0.39 0.24 0.13 0.32 0.25 0.64 0.25 -0.02 0.363
UHD [14] 0.29 0.22 0.11 0.15 -0.04 0.18 0.41 0.55 0.13 0.18 0.25 0.33 0.231
SAUCD (Ours) 0.73 0.21 0.60 0.63 0.31 0.51 0.83 0.65 0.77 0.80 0.69 0.08 0.567
Adjusted SAUCD (Ours) 0.79 0.19 0.56 0.64 0.36 0.54 0.79 0.76 0.75 0.77 0.67 0.36 0.598

a. Pearson’s linear correlation coefficient.

Metrics
Object No.

1 2 3 4 5 6 7 8 9 10 11 12 Overall

Chamfer Distance [13] 0.33 0.14 -0.09 0.43 -0.08 -0.06 -0.15 0.17 -0.04 0.24 -0.16 0.22 0.079
Point-to-Surface 0.42 0.39 0.14 0.59 0.11 0.05 -0.10 0.20 0.18 0.40 -0.11 0.18 0.205
Normal Difference 0.44 0.22 0.33 0.42 0.19 0.29 0.33 0.56 0.33 0.32 0.21 0.34 0.331
IoU [30] 0.57 0.61 0.28 0.50 0.36 0.21 0.12 0.31 0.262 0.56 0.03 0.30 0.342
F-score [33] 0.47 0.25 0.20 0.52 0.21 0.11 0.07 0.36 0.30 0.42 -0.01 0.35 0.27
SSFID [18] 0.63 0.81 0.28 0.70 0.33 0.23 0.10 0.33 0.32 0.65 0.16 0.34 0.407
UHD [14] 0.38 0.20 0.11 0.32 0.13 0.35 0.41 0.60 0.06 0.27 0.37 0.35 0.296
SAUCD (Ours) 0.79 0.25 0.57 0.59 0.36 0.56 0.83 0.79 0.69 0.69 0.83 0.24 0.598
Adjusted SAUCD (Ours) 0.83 0.21 0.55 0.59 0.38 0.60 0.82 0.80 0.69 0.68 0.75 0.42 0.611

b. Spearman’s rank order correlation coefficient.

Metrics
Object No.

1 2 3 4 5 6 7 8 9 10 11 12 Overall

Chamfer Distance [13] 0.25 0.14 -0.08 0.31 -0.04 -0.02 -0.09 0.15 0.013 0.19 -0.07 0.22 0.080
Point-to-Surface 0.33 0.30 0.07 0.45 0.10 0.08 -0.03 0.17 0.13 0.30 -0.01 0.16 0.171
Normal Difference 0.34 0.16 0.17 0.31 0.18 0.22 0.26 0.44 0.25 0.23 0.16 0.27 0.250
IoU [30] 0.42 0.44 0.24 0.37 0.28 0.22 0.14 0.26 0.20 0.41 0.10 0.23 0.275
F-score [33] 0.37 0.17 0.14 0.42 0.15 0.11 0.09 0.28 0.23 0.34 0.01 0.30 0.216
SSFID [18] 0.48 0.62 0.24 0.51 0.25 0.24 0.12 0.29 0.26 0.48 0.17 0.23 0.322
UHD [14] 0.27 0.13 0.07 0.22 0.09 0.26 0.29 0.42 0.048 0.19 0.28 0.24 0.209
SAUCD (Ours) 0.60 0.16 0.42 0.41 0.27 0.45 0.65 0.57 0.55 0.47 0.60 0.19 0.445
Adjusted SAUCD (Ours) 0.64 0.14 0.40 0.41 0.29 0.48 0.63 0.59 0.55 0.45 0.57 0.29 0.453

c. Kendall’s rank order correlation coefficient.

Table 2.1: Correlations between different metrics and human annotation. “SAUCD” is our
basic version metric. “Adjusted SAUCD” is the human-adjusted version of our metric. The
ranges of all three correlation coefficients are [−1, 1], and the higher the better.

Operator (DLBO) as in Eq. (2.4) to make sure λi ≥ 0, then to calculate weight wi whose

corresponding λi /∈ {λw,k}, we only consider when λi > 0. We use interpolation to calculate

λi as

wi =


(λw,i+−λi)w(λw,i+)+(λi−λw,i−)w(λw,i−)

λw,i+−λw,i−
, 0 < λi < λw,19

λw,19, λi > λw,19,
(2.19)

where λw,i− and λw,i+ are the left and right nearest element to λi in {λw,k}.

Having wi, we can calculate Human-adjusted SAUCD following Eq. (2.18).
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dataset Raw w/ IQR removal
number of valid scores 24304 23775
Scoring range [0, 6] [0, 6]
95% confidence interval 0.318 0.303
Relative 95% confidence interval 5.33% 5.04%

Table 2.2: Dataset statistics and error analysis.

4 Dataset

We build a user study benchmark dataset Shape Grading to evaluate whether our metric

is aligned with human evaluation. The dataset contains the human evaluation scores for a

variety of distorted meshes. Using this dataset, we can calculate the correlation between

metric outputs and human evaluation scores to see how aligned the test metrics are to human

evaluation.

4.1 Dataset Design

We choose 12 objects as ground truth 3D triangle mesh from public object/scene/human

mesh datasets such as [57, 58, 59] and commercial datasets such as [60, 61]. These objects

are picked from different categories including humans, animals, buildings, plants, etc.. For

each object, we synthesize 7 different types of distortions which commonly occur in 3D

reconstruction. For each distortion type we synthesize 4 distortion levels, which gives us

7 × 4 = 28 distorted objects for every ground truth object. We rotate and render each

distorted object into 3 videos using different materials for the mesh. In total, we generate

12× 28× 3 = 1, 008 distorted mesh videos.

Fig. 2.4 shows the objects in our proposed dataset Shape Grading and what the object

numbers later experiments in Tab. 2.1. We also show the distortion types that we used in our

dataset and how we generate them in Tab. 2.6. Fig. 2.5 shows examples of distorted meshes

of different distortion levels in our dataset.
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No.1: 

Animal

No.2: 

Building

No.3: 

Food

No.4: 

Furniture

No.5: 

Human Body Female

No.6: 

Human Body Male

No.7: 

Human Face Female

No.8: 

Human Face Female

No.10: 

Plant

No.9: 

Human Hand

No.11: 

Statue No.12: 

Vehicle

Figure 2.4: Objects in our provided Shape Grading dataset and what the object numbers
correspond to in Tab. 2.1.

Human Hand
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Unproportional scaling 
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Human Face Male

Poisson reconstruction noise 
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Food

Poisson reconstruction noise

Level 2

Building

Impulse

Level 2

Animal

Low resolution
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Figure 2.5: Examples of distorted meshes of different distortion levels in our provided Shape
Grading dataset.

4.2 Human Scoring Procedure Overview

We use a pairwise comparison scoring process similar to [62]. Each subject will evaluate all

28 distorted objects of one ground truth object with a certain material. The scoring follows

a Swiss system tournament principle used in [62], in which each subject takes 6 rounds of

pairwise comparison to score the distorted meshes. After 6 rounds of scoring, the meshes

are scored from 0 to 6. 0 means the object loses in every round and 6 means it wins in every

round. This process will largely reduce the biases among subjects, since the subjects are

compelled to distribute an equal amount of points to the 28 distorted objects. The process
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will take about 15 minutes for each subject, avoiding the fatigue problem in [63]. For every

object rendered with every material, we have 24 to 25 subjects scoring it. In total, we have

868 subjects (536 males, 316 females, and 16 others) who give us 868× 28 = 24304 scores.

4.3 Swiss System Tournament for Human Scoring

We do a Swiss system tournament for human scoring. The tournament has 6 rounds. To

begin with, all 28 meshes are set to 0 points. In the first round, the 28 meshes are randomly

sorted and we form the adjacent meshes into pairs (the 1st and 2nd meshes form a pair, the

3rd and 4th meshes form another pair, etc.). Together, we have 14 pairs. For each pair, we

ask the subject which one is closer to the groundtruth. The mesh that the subject picked will

be added 1 point. From the 2nd to the 6th round, for each round, we first sorted the meshes

by their current score from low to high, and we also make pairs with adjacent meshes in

the sorted mesh array, like what we did in the first round. The mesh closer to groundtruth

will be added 1 point. The scores of the meshes after 6 rounds is their score graded by this

subject. Fig. 2.6 shows the panel of our online human scoring page.

4.4 Outlier Detection

We use the interquartile range (IQR) method [64] which is widely used in statistics to detect

and remove outliers. For each distorted mesh, we first find the 25 percentile and the 75

percentile of the scores. The score range in between is called the IQR range. We remove the

scores that are 1.5IQR smaller than the 25 percentile or 1.5IQR larger than the 75 percentile.

Our dataset error analysis in Tab. 2.2 shows, that by removing 2.2% of the scores using IQR,

we can decrease the uncertainty of the final scoring result by nearly 6%.
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Figure 2.6: The panel of our online user study system. The instruction on the left contains
simple instructions for the subjects. On the right side of the page, the top two videos are
rendered from distorted meshes. The lower video is rendered from groundtruth mesh.

4.5 Dataset Error Analysis

We analysis the average 95% confidence interval of our dataset scores in Tab. 2.2. The

confidence interval of score x can be calculated as σx̄ = z0.95 × σ/
√
N where σ is the

standard derivation of x, N is the number of valid scores, and z0.95 ≈ 1.96. We report

the average 95% confidence interval and the relative 95% confidence interval (which is the

confidence interval divided by the scoring range). The result shows that dataset scoring is

accurate with a 5% error range with IQR outlier removal.

5 Experiments

5.1 Dataset

We build a user study benchmark dataset Shape Grading to evaluate whether our metric

is aligned with human evaluation. The dataset contains the human evaluation scores for a
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Figure 2.7: An example of mesh spectrum curve: We do mesh Fourier transform on the
“Origin” mesh and show the spectrum in the left graph. The λ-axis is the eigenvalues of
the DLBO matrix, the larger the higher frequency. We also show how mesh changes when
gradually removing high-frequency information (mesh A to G). The frequency bands of the
meshes are shown as the colored arrows in the left graph.

variety of distorted meshes. Using this dataset, we can calculate the correlation between

metric outputs and human evaluation scores to see how aligned the test metrics are to human

evaluation. Details of the dataset can be found in Sec. 4.

5.2 Implementation Details

We implement our basic version metric following Eq. (2.6). F̂ (λ) and Fgt(λ) in Eq. (2.6)

are both piece-wise functions, so we implement the integration by simply adding every

piece area together. We implement our human-adjusted version following Eq. (2.7). We

use a 20-dimensional weight w(λ) to avoid overfitting. We interpolate w to all frequencies

of the ground truth and test meshes and element-wisely multiply them to the spectrums.

In spectrum weight training, SROCC and PLCC are used as part of the loss function as

Eq. (2.8). KROCC is not used in training but only for testing. We use a k-fold strategy for

training the human-adjusted weight. Each time we choose 1 object for testing and the rest

11 objects for training, which means k = 12.
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5.3 Evaluation Methods

We use 3 different evaluation methods to evaluate the correlation between our metrics and

human scoring (groundtruth) on our provided Shape Grading dataset.

Pearson’s linear correlation coefficient (PLCC). Pearson’s correlation [55] evaluates

the linear alignment between our metrics and human evaluation. It is defined as

p =

∑N
i=1(hi − h̄i)(mi − m̄i)√∑N

i=1(mi − m̄i)2
√∑N

i=1(hi − h̄i)2
, (2.20)

where mi is the score of mesh i given by the tested metric and hi is the groundtruth score

(human scoring) of mesh i. h̄i and m̄i are the average score of hi and mi, respectively.

Spearman’s rank order correlation coefficient (SROCC). SROCC [56] is one of the

most commonly used metrics to measure rank correlations. It is defined as

rs = 1− 6
∑

(R(mi)−R(hi))
2

n(n2 − 1)
, (2.21)

where mi and hi is are defined the same as in Eq. (2.20). R(mi) and R(hi) are the rankings

of mi and hi, and n is the amount of data. In our paper, n is the number of meshes scored

by one subject.

Kendall’s rank order correlation coefficient (KROCC). KROCC [65] is also a rank

order correlation. It is defined as

τ = 1− 2

n(n2 − 1)

∑
i<j

sgn(mi −mj)sgn(hi − hj), (2.22)

where mi, hi, and n is the same with Eq. (2.21), and sgn()̇ is the sign function, which means

sgn(x) = 1 when x > 0, sgn(x) = −1 when x < 0, and sgn(x) = 0 when x = 0. The

difference between SROCC and KROCC is, SROCC considers the actual amount of rank

order difference of input data, while KROCC only counts the number of inverse pairs.
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The possible ranges of all 3 metrics are [−1, 1]. Higher numbers mean stronger correla-

tions.

5.4 Human-adjusted SAUCD Training

During training, Pearson’s correlation loss Lplcc and Spearsman’s rank order loss Lsrocc in

Eq. (2.8) are defined the same as Eq. (2.20) and Eq. (2.21), respectively. Note that, since

the rank part of SROCC is not naturally differentiable, we used a differentiable ranking

approach provided in [66] to make Eq. (2.21) differentiable. We set λp = 0.1 , λsr = 10,

and λregu = 1 for Eq. (2.8). The training process took about 1 minute on a 14-core Intel

Xeon CPU. The training code is implemented using PyTorch [67].

5.5 Quantitive and Qualitative Results

SOTA comparison. Tab. 2.1 shows our results compared to previous 3D mesh shape metrics.

We evaluated the correlation between each metric and the human scoring via three different

evaluation methods. We observe that a) without any learning-based design, our metric

outperforms the SOTA learning-based (SSFID) and non-learning-based metrics (Chamfer

Distance, IoU, F-score, and UHD), b) our extended version metric with learned weights has

better linearity and slightly better ranking order correction with human evaluation, and c)

our results on different objects show that our metrics have good generalizability.

Spectrum example. We first show an example of mesh spectrum in Fig. 2.7. We

decompose the “origin” mesh using the Fourier Transform and get the resulting spectrum

(top-left graph). The meshes on the right (from mesh A to G) are generated by gradually

removing high-frequency information. The frequency bands of the meshes are shown as

colored arrows in and under the graph. As we see, the details gradually disappear as we

remove high-frequency information.

Frequency band separation. We explored the consistency between human percep-

tion and the information obtained from every frequency band. Specifically, we separate
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Figure 2.8: Learned spectrum weights on all 12 folds. The name of colorful thin lines
means the test object name of that fold. The bold purple line is the average weights of all
folds. We also show some examples of mesh shape information in different frequency bands.
Frequency band A is [0, 0.0075), B is [0, 0.03), and C is [0, 0.05).

the frequency band exponentially and build metrics only using information from that fre-

quency band. The results are shown in Tab. 2.3, we find the frequency bands [0, 0.001] and

[0.01, 0.03] have the best consistency with human perception. Moreover, it shows that if we

put all frequencies together, they can achieve better results.

Trained weight. We show our trained weights in Human-adjusted metric in Fig. 2.8.

Different lines represent different folds, and the bold purple line is the average weight. We

can see the weights trained on each fold have similar patterns. We also observe that the

weight curves have a small peak in the range A and two much larger peaks between A and

B, which means our extended metric relies more on the information between A and B. We

show an example of mesh shapes in the range A, B, and C at the bottom of Fig. 2.8. Mesh A

obviously has fewer details than Mesh B, and the weight curve shows that this difference is
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Our revision of Cotan 

formula DLBO:

All frequencies are 

non-negative

The original Cotan 

formula DLBO:

Having negative 

frequencies

Filtered mesh 1Origin mesh Filtered mesh 2 Filtered mesh 1 Filtered mesh 2Origin mesh

Figure 2.9: Counterintuitive low-frequencies information if some of the mesh frequencies
are negative. We can see if we remove the high-frequency part of the mesh (resulting in
“Filtered mesh 1” and “Filtered mesh 2”) using the original Cotan formula, the mesh’s
low-frequency parts show artifacts (sharp shapes). The red circles show the artifacts in the
left object. The right object shows a case when these artifacts occur much more often. These
artifacts do not occur using our revised Cotan formula DLBO.

Table 2.3: Results when building metrics using each frequency band separately. The bottom
row is our proposed metric.

Frequency band PLCC ↑ SROCC ↑ KROCC ↑
[0, 0.001) 0.434 0.515 0.376
[0.001, 0.003) 0.240 0.409 0.281
[0.003, 0.01) 0.255 0.455 0.340
[0.01, 0.03) 0.421 0.528 0.391
[0.03, 0.1) 0.287 0.351 0.250
[0.1,∞) 0.318 0.192 0.155
[0,∞) 0.567 0.598 0.445

what the learning process tries to emphasize.

Negative frequencies. In Fig. 2.9 we illustrate how our revised Cotan formula DLBO

in Eq. (2.4) improves frequency analysis compared to the original Cotan formula in

Eq. (2.2) [53]. The first and second rows are the results of the original Cotan formula

DLBO and our revised Cotan formula DLBO, respectively. The original Cotan formula

can yield negative frequencies due to its lack of positive semidefiniteness, whereas our

revision ensures all frequencies are non-negative. For both objects in the figure, we remove

different portions of high-frequency information and show the remaining low-frequency

parts (resulting in “Filtered mesh 1” and “Filtered mesh 2”). For the left object, notice the

counterintuitive sharp shapes in the red circle when using the Cotan formula. The right

object is a much more severe case. Sharp shapes in low-frequency parts show improper

decomposition and high-frequency aliasing with low-frequency shapes, making the Cotan
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Table 2.4: Results with different pruning portions. The metric achieves better results with
pruning portion to be 0.1% or 1%. We use pruning portion as 0.1% in our design.

Pruning Portion PLCC ↑ SROCC ↑ KROCC ↑
0% 0.513 0.549 0.393
0.1% 0.567 0.598 0.445
1% 0.554 0.602 0.462
10% 0.517 0.581 0.442
20% 0.503 0.587 0.445

Table 2.5: Module replacement. We replace each module of our metric with alternative
designs to verify the design of each module.

Modules PLCC ↑ SROCC ↑ KROCC ↑
Topology Laplacian [54] 0.298 0.327 0.235
Cotan formula [53] 0.417 0.470 0.340
Energy difference 0.268 0.315 0.215
w/o normalization 0.257 0.507 0.353
Spatial normalization 0.269 0.542 0.392
Ours 0.567 0.598 0.445

formula unsuitable for spectral mesh comparison. In contrast, our revised formula yields

smooth low-frequency components without these artifacts.

Noise pruning portion. Tab. 2.4 shows our SAUCD metric performance by changing

the noise pruning portion (Sec. 3.3). The metric achieves better results when the pruning

portion is 0.1% or 1%. In our proposed metric, we choose the pruning portion to be 0.1% to

best avoid possible high-frequency information loss.

Module replacement. Tab. 2.5 shows our SAUCD metric performance by replacing

some modules with alternative designs. First, we replace our revision of the discrete

Laplace-Beltrami operator in Eq. (2.4) with topology Laplacian matrix in [54] and “Cotan

formula” in [53]. Second, we change the AUC difference defined in Eq. (2.6) into the energy

difference, which means changing |F̂ (λ)− Fgt(λ)| in Eq. (2.6) into |F̂ (λ)2 − Fgt(λ)
2|. In

the third experiment, we replace AUC normalization (in Sec. 3.3) with spatial normalization,

where we normalize the meshes by their maximum range along all 3 spatial axes. We also

removed the AUC normalization module for another comparison. Our experiments show

SAUCD has better performance than alternative designs.
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Input Images w/ SAUCD Lossw/o SAUCD Loss Ground Truth

Figure 2.10: We Adapt SAUCD into a loss function and use it in monocular-image-based
3D hand reconstruction. From left to right: input images, reconstruction result w/o SAUCD
loss, reconstruction result w/ SAUCD loss, and ground truth mesh. We can see that the
enhancement of SAUCD loss in mesh details is clearly noticeable.

Adapting SAUCD to loss function. We adapted our metric into a loss function to

enhance the visual quality of 3D mesh reconstructions, as evident from the hand reconstruc-

tion results in Fig. 2.10. Specifically, we adapt SAUCD to a topology Laplacian version.

Specifically, we replace the Laplacian matrix defined in the main paper Eq.(4) to L = D−A

defined in [54], where D is the degree matrix of the mesh graph, and A is the adjacency

matrix of the mesh graph. By making the change, we can avoid calculating a different SVD

decomposition in every training iteration when mesh vertex locations change. Our network

is designed as Fig. 2.13. The input image first goes through a feature extraction CNNs

network to get image features, and using that feature to generate MANO [68] mesh. Then,

we use features from CNNs network and 3 resolution levels of Graph Convolution Networks

(GCN) to reconstruct the mesh details. In the main paper Fig. 8, we compare the results

using only MVPE loss (w/o SAUCD loss column) and using both MVPE and SAUCD loss

(w/ SAUCD loss column). In this experiment, we use EfficientNet [69] and GCN similar to

[70].

How mesh scale changes using AUC Normalization We use AUC normalization on
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Figure 2.11: AUC normalization. We normalize the spectrum of origin mesh with factor
s = 2. The blue curve is the resulting curve. We transform the blue curve back to s = 2
scaled mesh. As we see on the right side, the mesh’s general shape is kept the same, but the
scales increased to twice the size of the original mesh.

a. Impulse

b. Poisson reconstruction noise

c. Smoothing

d. Unproportional scaling

e. Low resolution mesh

f. White noise

g. Outlying noise

𝑠 = −1 𝑠 = 1Ours vs. CD Ours vs. IoU Ours vs. F-score Ours vs. SSFID Ours vs. UHD

Figure 2.12: Pair-wise distortion type comparisons. s is the percentage difference of the
inverse-order pairs compared to groundtruth. Blue color means s is larger than 0, which
shows that our metric is better than compared metric among the meshes of distortion pair
(d1, d2). Red color means s is smaller than 0, which means the compared metric is better.

the spectrum curve to normalize the mesh scale. In Fig. 2.11, we show an example of how

the mesh changes when we normalize the spectrum with factor s = 2 in Eq. (2.6). As we

see, the mesh shape is kept the same, but the scales are changed proportionally with the

normalization factor s.

Pair-wise distortion comparison. We explore how our metric performs when leveraging

different types of distortions. As shown in Fig. 2.12, we compare our metric with previous

metrics considering only a pair of distortion types. The score in the boxes is calculated as:

s =
∆ours(d1, d2)

2N2
− ∆prev(d1, d2)

2N2
. (2.23)

Here, ∆ours(d1, d2) =
∑

i,j sgn(mours,d1,i − mours,d2,j) sgn(hd1,i − hd2,j) indicates the

number of reverse-order pairs comparing our metric to groundtruth among all levels of d1 and

d2 type distortions, and ∆prev(d1, d2) =
∑

i,j sgn(mprev,d1,i −mprev,d2,j) sgn(hd1,i − hd2,j)
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SAUCD loss
MVPE loss

GCN1 GCN2 GCN3

CNNs

Figure 2.13: Network architecture used when adapting SAUCD to training loss.

Groundtruth mesh Mesh w/ distortions

User study↑ 1.23 3.74 2.36 4.57 2.63

Ours↓ 0.72 1.13 0.80 0.92 0.65

Ours extended↓ 1.06 1.96 1.12 1.34 1.02

Figure 2.14: Failure cases. We show a case in which our metric does not provide accurate
evaluations aligned with the human evaluation.

means that of previous method. mours and mprev are the scores obtained from our metric

and the previous metric, respectively. h is the groundtruth score (human annotation). d1

and d2 indicate 2 kinds of distortions. i and j indicate the ith and jth level of distortions.

N is the number of data. sgn(·) is sign function, which means sgn(x) = 1 when x > 0,

sgn(x) = −1 when x < 0, and sgn(x) = 0 when x = 0. s’s range is [−1, 1]. When our

metric is correct and the compared metric is incorrect for every pair, s = 1; When our

metric is incorrect and the compared metric is correct for every pair, s = −1. We performed

the experiment with 5 previous metrics as shown in Tab. 2.1. We observe that our metric

has generally better results than previous metrics in most distortion pairs. When one of

the distortion types in the pair is “Smoothing”, “Impulse”, “White nose”, or “Outlying

noise”, our metric tends to have better human perception alignment. When the pair includes

“Low-resolution mesh”, our metric does not align with humans very well. A possible reason

is that some low-resolution meshes have much fewer vertices than groundtruth meshes, and
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fewer vertices would cause larger noise when estimating the discrete spectrum.

Visualized ealuation results. We show more examples in our dataset and evaluation

results using different metrics in Fig. 2.15. Compared to previous methods, our provided

metrics generally align better with the human evaluation of mesh shape similarity.

Failure cases. We also show a case that our metric does not provide accurate evaluations

aligned with the human evaluation in Fig. 2.14.

6 Conclusions

In order to propose a 3D shape evaluation that better aligns with human perception, we design

an analytic metric named Spectrum AUC Difference (SAUCD). Our proposed SAUCD

leverages mesh spectrum analysis to evaluate 3D shape that aligns with human evaluation,

and its extended version Human-adjusted SAUCD further explores the sensitivity of human

perception of each frequency band. To evaluate our new metrics, we build a user study

dataset to compare our metrics with existing metrics. The results validate that both our new

metrics are well aligned with human perceptions and outperform previous methods.
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Distortion
types

Description Generating details

Impulse Adding impulsive
noise on mesh sur-
face

We add Gaussian noise on r percent of the ground truth
mesh vertices. The mean of the Gaussian noise is set to
0 and standard derivation is set to σ percent of the mesh
scale. For 4 levels of this distortion, (r, σ) are set to (1,
0.5), (5, 2), (8, 3), and (1, 5), respectively.

Poisson
reconstruc-
tion noise

Synthesizing the
noise occurs in
Poisson recon-
struction [71]

We first use Poisson disk sampling [72] to sample sN
points from the groundtruth mesh surface, where N is
the number of vertices in groundtruth mesh. Then, we
use Poisson reconstruction provided in MeshLab [73] to
reconstruct the mesh surface from the sampled points.
The reconstruction depth is set to 6. For 4 levels of this
distortion, s is set to 0.9, 0.5, 0.2, and 0.05, respectively.

Smoothing Smoothing mesh
surface

We apply i times of λ − µ Taubin smoothing [74] to
smooth the groundtruth mesh surface, where λ = 0.5 and
µ = −0.53. For 4 levels of this distortion, i is set to 5,
20, 50, and 200, respectively.

Unproportional
scaling

Stretching (or
shrinking) the
mesh along x, y,
and z axis with
different rates

We stretch the mesh to sx percent to its original length
along x axis, and shrink the mesh to sz percent to its
original length along z axis. For 4 levels of this distortion,
(sx, sz) are set to (98, 102), (95, 105), (90, 110), (80, 120),
respectively.

Low-
resolution
mesh

Simplifying mesh
surface to lower
resolution

We simply the groundtruth mesh surface using edge col-
lapse algorithm [75]. For 4 levels of this distortion, the
target face number is set to 5000, 2000, 1000, and 500,
respectively.

White noise Adding Gaussian
white noise on
mesh surface

We add Gaussian noise on all the groundtruth mesh ver-
tices. The mean of the Gaussian noise is set to 0 and
standard derivation is set to σ percent of the mesh scale.
For 4 levels of this distortion, σ is set to 0.1, 0.2, 0.3, and
0.5, respectively.

Outlying
noise

Adding outlying
small floating
spheres around
the mesh

We add floating spheres around the groundtruth mesh to
synthesize outlying noise that occurs in 3D reconstruction.
The number of the spheres is set to n and the radius
rA, where A is the maximum length of the mesh along
x, y, and z dimensions. The locations of the spheres
are sampled randomly from a cube that surrounds the
groundtruth mesh. The edge size of the cube is set to
(1 + 6r)A. For 4 levels of this distortion, (n, r) are
set to (20, 0.002), (30, 0.004), (40, 0.006), (80, 0.008),
respectively.

Table 2.6: Distortions in our provided Shape Grading dataset.
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Groundtruth mesh Mesh w/ distortions

User study↑ 4.70 3.93 3.90 2.38 4.81 2.37

Ours↓ 0.30 0.42 0.41 1.35 0.27 0.89

Ours extended↓ 0.23 0.31 0.35 1.20 0.21 0.73

Chamfer Distance↓ 0.07 29.52 3.10 5.02 12.62 4.83

IoU↑ 1.00 0.24 0.97 0.95 0.68 0.94

F-score↑ 1.00 0.93 1.00 1.00 0.95 1.00

SSFID↓ 0.00 1.38 0.01 0.02 0.05 0.08

UHD↓ 12.60 0.00 30.13 37.96 36.93 14.12

Groundtruth mesh Mesh w/ distortions

User study↑ 4.40 2.63 4.03 0.51 3.68 4.66

Ours↓ 0.46 1.08 0.51 1.22 0.89 0.48

Ours extended↓ 0.36 0.92 0.43 1.14 0.90 0.38

Chamfer Distance↓ 0.006 1.32 1.86 2.45 0.44 0.63

IoU↑ 1.00 0.87 0.24 0.09 0.89 0.92

F-score↑ 1.00 0.95 0.94 0.85 1.00 1.00

SSFID↓ 0.0002 0.04 0.44 8.57 0.03 0.02

UHD↓ 1.03 6.72 0.51 1.22 0.89 0.48

Groundtruth mesh Mesh w/ distortions

User study↑ 4.64 2.74 4.10 1.87 4.67 3.01

Ours↓ 0.52 7.02 0.53 1.25 0.55 0.94

Ours extended↓ 0.70 1.43 0.76 1.99 0.80 1.19

Chamfer Distance↓ 0.01 1.26 2.12 1.13 0.69 0.30

IoU↑ 1.00 0.96 0.29 0.81 0.93 0.97

F-score↑ 1.00 0.97 0.93 1.00 1.00 1.00

SSFID↓ 0.0001 0.01 0.59 0.11 0.03 0.004

UHD↓ 1.45 1.02 0.53 1.25 0.55 0.94

Figure 2.15: Examples in our dataset and their evaluation results using different metrics. ↓
means lower is better. ↑ means higher is better. For each object, the mesh on the top-left is
the groundtruth mesh, and the rest meshes are distorted meshes. The table below the meshes
contains the scores they get from different metrics or from our user study. As shown in the
figure, our metric aligns better with user study scores and human perception.
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Chapter 3

Fully-supervised High-fidelity Hand

Reconstruction

1 Introduction

High-fidelity and personalized 3D hand modeling have seen great demand in 3D games,

virtual reality, and the emerging Metaverse, as it brings better user experiences, e.g., users

can see their own realistic hands in the virtual space instead of the standard avatar hands.

Therefore, it is of great importance to reconstruct high-fidelity hand meshes that can adapt

to different users and application scenarios.

Despite the previous successes in 3D hand reconstruction and modeling[76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90], few existing solutions focus on enriching the

details of the reconstructed shape, and most current methods fail to generate consumer-

friendly high-fidelity hands. When we treat the hand mesh as graph signals, like those of

most natural signals, the low-frequency components have larger amplitudes than those of

the high-frequency parts, which can be observe in a hand mesh spectrum curve (Fig. 3.1).

Consequently, if we generate the mesh purely in the spatial domain, the signals of different

frequencies could be biased, thus the high-frequency information can be easily overwhelmed
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0 2 4 6 8 10 12× 103

Frequency components

Figure 3.1: An exemplar hand mesh with sufficient details and its graph frequency decom-
position. The x-axis shows frequency components from low to high. The y-axis shows the
amplitude of each component on a logarithm scale. At the frequency domain, the signal
amplitude generally decreases as the frequency increases.

by its low-frequency counterpart. Moreover, the wide usage of compact parametric models,

such as MANO [68], has limited the expressiveness of personalized details. Even though

MANO can robustly estimate the hand pose and coarse shape, it sacrifices hand details for

compactness and robustness in the parameterization process, so the detail expression ability

of MANO is suppressed.

Additionally, in the previous methods, transferring the detailed information from images

to the mesh was also a significant challenge. As shown in Fig. 3.2, previous works such as

[70] use a simple pooling to attach global features to mesh vertices (first row in Fig. 3.2), but

global pooling would eliminate the shape detail information, which is needed to reconstruct

high-fidelity hands. Other methods such as [81] use a projection strategy (second row in

Fig. 3.2). The features on the mesh vertices are extracted from the projected location of

the vertices on the feature map, but this method is sensitive to projection accuracy. A small

projection error would result in very different local details in the image, thus influencing

the reconstruction of hand details. Furthermore, datasets used in previous works lack mesh

annotations that are rich in detail and correct topological structures, which are essential for

training high-fidelity hands. Existing multiview hand datasets such as [91] can generate
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scanned 3D hand meshes using multiview stereo methods, but a scanned hand mesh does

not guarantee a complete hand topological structure. As shown in Fig. 3.3, when different

parts of the hand are close, such as when fingers are touching or the hand is clenched into

a fist, scanning only captures the outer surface shape of the hand. This results in a loss of

shape and topological information for the inner areas.

To better model detailed 3D shape information, we transform the hand mesh into the

graph frequency domain, and design a frequency-based loss function to generate high-

fidelity hand meshes in a scalable manner. Supervision in the frequency domain explicitly

constrains the signal of a given frequency band from being influenced by other frequency

bands. Therefore, the high-frequency signals of hand shape will not be suppressed by low-

frequency signals despite the amplitude disadvantage. To improve the expressiveness of hand

models, we design a new hand model of 12, 337 vertices that extends previous parametric

models such as MANO with nonparametric representation for residual adjustments. While

the nonparametric residual expresses personalized details, the parametric base ensures the

overall structure of the hand mesh, e.g., reliable estimation of hand pose and 3D shape.

Instead of fixing the hand mesh resolution, we design our network architecture in a coarse-

to-fine manner with three-resolution-level U-net for scalability. Different levels of image

features contribute to different levels of detail. Specifically, we use low-level features in high-

frequency detail generation and high-level features in low-frequency detail generation. At

each resolution level, we use a Graph Convolution Network (GCN) to generate hand meshes,

and our network outputs a hand mesh with the corresponding resolution. During inference,

the network outputs an increasingly higher resolution mesh with more personalized details

step-by-step, while the inference process can stop at any one of the three resolution levels.

To retain high-frequency information from image features and apply it to the Graph

Convolutional Network (GCN) to reconstruct high-fidelity hands, we designed an Image-

Graph Ring Frequency Mapping (IGRFM) module to transform image features into graph

features via the frequency domain. IGRFM converts image information into frequency

40



Global 

Pooling
Duplicate to 

each vertex

Projection

Attach features 

to graph vertices

To image 

frequency 

domain

To graph 

frequency 

domain

To graph 

spatial 

domain

Previous 

approaches

Our design

Features from 

projected vertices

Figure 3.2: To map the image features to graph features, previous methods use a simple
pooling strategy (first row) or a projection-interpolation strategy (second row), but the
detailed high-frequency features would be easily damaged by pooling or small projection
errors. In this paper, we propose an Image-Graph Ring Frequency Mapping (IGRFM) (third
row) to map the image features to the graph features via the frequency domain.

domain signals, segregates and reassembles information from different frequency bands, and

uses this information as the frequency feature of the GCN. It then transforms the frequency

feature through a Graph Inverse Fourier Transform (Graph IFT) into per-vertex mesh spatial

features. This design allows for a direct correspondence between different frequency band

features in the image and the graph, enabling the reconstruction of high-fidelity hands to

explicitly utilize information from the image across various frequency bands. To generate

mesh annotations for training that are rich in detail and with correct topological structures,

we designed a method for registering scanned mesh with a parametric model. Regardless

of the occlusions or changes in the topology of the scanned mesh, our registration method

consistently produces ground-truth meshes with detailed shapes and accurate topology.

In summary, our contributions include the following.

1. We design a high-fidelity 3D hand model for reconstructing 3D hand shapes from sin-

gle images. The hand representation provides detailed expression, and our frequency

decomposition loss helps capture the personalized shape information.

2. To enable computational efficiency, we propose a frequency split network architecture
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Figure 3.3: An example of the topology error of a scanned hand mesh. The red part on
the top-right is the missing or ambiguous topology. To better train our network, we use a
bidirectional registration strategy to generate valid ground-truth meshes.

to generate high-fidelity hand meshes in a scalable manner with multiple levels

of detail. During inference, our scalable framework supports budget-aware mesh

reconstruction when the computational resources are limited.

3. We propose a new metric to evaluate 3D mesh details. It better captures the average

signal-to-noise ratio of the mesh signal on all frequency bands to evaluate high-

fidelity hand meshes. The effectiveness of this metric has been validated by extensive

experiments.

The new contributions of our extension include:

1. We design an Image-Graph Ring Frequency Mapping (IGRFM) module to convert

image features to graph features through frequency domain analysis. This enables

the explicit use of information across various frequency bands from the image for

reconstructing high-fidelity hands.

2. We develop a method to register scanned meshes with a parametric model, ensuring
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detailed and topologically accurate ground-truth meshes, even with occlusions or

topological changes in the scans. This registration would give our network better

supervision.

3. Our experiments show the effectiveness of our extended methods. Our visualized and

quantitative results are further improved compared to the previous version.

We evaluate our method on the InterHand2.6M dataset [91]. In addition to the proposed

evaluation metrics, we also evaluate mean per joint position error (MPJPE) and mesh

Chamfer distance (CD). Compared to MANO and other previous methods, our proposed

method achieves better results using all three metrics.

2 Related Work

Parametric hand/body shape reconstruction. Parametric models are popular approaches

in hand mesh reconstruction. Romero et al. [68] proposed MANO, which uses a set of

shape and pose parameters to control the movement and deformation of human hands. Many

recent works [76, 78, 81, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106]

combined deep learning with MANO or its body counterpart SMPL[107]. They use features

extracted from the RGB image as input, a CNN to get the shape and pose parameters, and

eventually use these parameters to generate the parametric mesh. These methods make use

of the strong prior knowledge provided by the hand or body parametric model, so that it is

convenient to train the networks and the results are robust. However, the parametric method

limits the mesh resolution and details.

Non-parametric hand shape reconstruction. Non-parametric hand shape reconstruc-

tion typically estimates the vertex positions of a template with fixed topology. For example,

Ge et al. [89] proposed a method using a Graph Convolution Network (GCN). It uses a

predefined upsampling operation to build a multi-level spectrum GCN. Kulon et al. [108]

used spatial GCN and spiral convolution operator for mesh generation. Moon et al. [109]
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proposed a pixel-based approach. However, none of these works paid close attention to

detailed shapes. Moon et al. [110] provided an approach that outputs fine details, but

since they need the 3D scanned meshes of the test cases for training, their model cannot do

cross-identity reconstruction. In our paper, we design a new hand model that combines the

strength of both parametric and non-parametric approaches. We use this hand model as a

basis to reconstruct high-fidelity hands.

Mesh frequency analysis. Previous works mainly focused on the spectrum analysis

of the entire mesh graph. Chung [54] defines the graph Fourier transformation and graph

Laplacian operator, which builds the foundation of graph spectrum analysis. [111] extends

commonly used signal processing operators to graph space. [112] proposes a spectrum graph

convolution network based on graph spectrum characteristics. The spectral decomposition

of the graph function is used to define graph-based convolution. Recent works such as [113,

114, 115, 116, 117, 118, 119, 120] widely use spectrum GCN in different fields. However,

these works mainly focus on the analysis of the overall graph spectrum. In this paper, we

use spectrum analysis as a tool to design our provided loss function and metric.

Image-graph feature mapping. Image-graph feature mapping has always been an

important problem when using GCN in version tasks. Previous works using GCN to handle

mesh reconstruction typically use a simple feature mapping strategy with less consideration

of detailed shape information. [121, 122, 70] use pooling on image features, and reassemble

the resulting feature to graph vertices, but pooling would cause a loss of high-frequency

information, and is thus not suitable for detailed shape reconstruction. [81, 17] use location-

related approaches by sampling the feature from the projected location on feature maps.

Despite the possibility of preserving details, these approaches are very sensitive to projected

location. A small error in the projected location would cause a major local feature change,

and is thus not friendly to high-fidelity details. In our proposed method, we use a global

frequency mapping strategy which well preserves and maps the high-frequency information

of the image features to graph features.
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Figure 3.4: We design our scalable hand modeling network in a U-net manner. First, we
generate a MANO mesh from image features (light gray block). Then, based on the MANO
mesh, we use a multilevel GCN to recover 3 levels of personalized meshes (green blocks
from shallow to dark). In order to obtain high-frequency hand details, we use Image-Graph
Ring Frequency Mapping (IGRFM) skip-connected image features (yellow blocks) from
different layers of the backbone network as parts of the GCN input. At inference, our
network can stop at any resolution level, but still provides reasonable high-fidelity results at
that resolution.

3 Proposed Method

We propose a scalable network that reconstructs the detailed hand shape, and uses a frequency

decomposition loss to acquire details. Fig. 3.4 shows our network architecture. We design

our network in the manner of a U-net. First, we generate a MANO mesh from image features

from EfficientNet [69]. Based on the MANO mesh, we use a graph convolution network

(green blocks in Fig. 3.4) to recover a high-fidelity hand mesh. In order to obtain high-

frequency information, we use image features from different layers of the backbone network

as a part of the Graph Convolution Network (GCN) inputs. Specifically, at the low-resolution

level, we take high-level image features as part of the input, and use a low-resolution graph

topology to generate a low-resolution mesh. At medium and high-frequency levels, we use

lower-level image features through the skip connection to produce a high-resolution mesh.

At each resolution level, we use Image-Graph Ring Frequency Mapping (IGRFM) module

to map image features to graph features. Besides, the GCN will output the intermediate

hand mesh at every resolution level, so it would naturally have the ability for scalable
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inference. During the training process, we supervise both intermediate meshes and the final

high-resolution mesh. We discuss the details in the following.

3.1 High-fidelity 3D Hand Model

We design our hand representation based on MANO [68]. MANO factorizes human hands

into a 10-dimensional shape representation β and a 35-dimensional pose representation θ.

The MANO model can be represented as


M(θ, β) = W (TP (θ, β), θ, w)

TP (θ, β) = T +BS(β) +BP (θ)

(3.1)

where W is the linear blend skinning function. Model parameter w is the blend weight.

Besides, T is the original template mesh with n vertices and m edges, BS and BP are

another two parameters of MANO named shape blend shape and pose blend shape, which

are related to pose and shape parameters, respectively. MANO can transfer complex hand

surface estimation into a simple regression of a few pose and shape parameters. However,

MANO has limited capability in modeling shape detail. It is not only limited by the number

of pose and shape dimensions (45) but also by the number of vertices (778). In our work,

we designed a new parametric-based model with 12,337 vertices generated from MANO via

subdivision. The large number of vertices greatly enhances the model’s ability to represent

details.

Subdivided MANO. To address this problem. We design an extended parametric model

that can better represent details. First, we add detail residuals to MANO as

M ′(θ, β, d) = W (T ′
P (θ, β, d), θ, w

′),

T ′
P (θ, β, d) = T

′
+B′

S(β) +B′
P (θ) + d,

(3.2)

where, w′, T
′
, B′

S(β), and B′
P (θ) are the parameters our model, and d is the learnable
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per-vertex location perturbation. The dimension of d is the same as the number of vertices.

Besides vertex residuals, we further increase the representation capability of our hand

model by increasing the resolution of the mesh. Motivated by the traditional Loop subdi-

vision[123], we propose to design our parametric hand model by subdividing the MANO

template. Loop subdivision can be represented as

T
′
= LsT , (3.3)

where T
′

is the subdivided template mesh with n + m vertices, where n and m is the

number of vertices and edges of original template mesh T , and Ls ∈ R(n+m)×m is the linear

transformation that defines the subdivision process. The position of each vertex on the new

mesh is only determined by the neighboring vertices on the original mesh, so Ls is sparse.

We use similar strategies to calculate BS and BP . The MANO parameters map the input

shape and pose into vertex position adjustments. These mappings are linear matrices of

dimension x× n. Therefore, we can calculate the parameters as

w′ = (Lsw
⊤)⊤,

B′
S = (LsB

⊤
S )

⊤,

B′
P = (LsB

⊤
P )

⊤.

(3.4)

We repeat the procedure twice to get sufficient resolution.

Fig. 3.5 shows example meshes from the new model in different poses (d is set to 0). We

can see that our representation inherits the advantages of the parametric hand model. It has

a plausible structure with no visual artifacts when the hand poses change.

3.2 Hierachical Graph Convolution Network

Our GCN utilizes a multiresolution graph architecture that follows the subdivision process

in Section Sec. 3.1. Different from the single graph GCNs in previous works [124, 125],
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Figure 3.5: We design a new high-fidelity hand mesh with 12, 337 vertices. Our new
model inherits the advantages of the parametric hand model and provides reliable 3D shape
estimation with fewer flaws when hand poses change.

our GCN uses different graphs in different layers. At each level, each vertex of the graph

corresponds to a vertex on the mesh, and the graph topology is defined by the mesh edges.

Between two adjacent resolution levels, the network uses the Ls in Eq. (3.3) for upsampling

operation.

This architecture is designed for scalable inference. When the computing resources are

limited, only the low-resolution mesh needs to be calculated; when the computing resources

are sufficient, then we can calculate all the way to the high-resolution mesh. Moreover, this

architecture allows us to explicitly supervise the intermediate results, so the details would

be added level-by-level.

3.3 Graph Frequency Decomposition

In order to supervise the output mesh in the frequency domain and design the frequency-

based metric, we need to do frequency decomposition on mesh shapes. Here, we regard

the mesh as an undirected graph, and 3D locations of mesh vertices as signals on the

graph. Then, the frequency decomposition of the mesh is the spectrum analysis of this

graph signal. Following [54], given an undirected graph G = {V , E} with a vertices set of
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V = {1, 2, ..., N} and a set of edges E = {(i, j)}i,j∈V , the Laplacian matrix is defined as

L = D−A, (3.5)

where A is the N × N adjacency matrix with entries defined as edge weights aij and D

is the diagonal degree matrix. The ith diagonal entry di =
∑

j aij . In this paper, the edge

weights are defined as

aij :=


1, (i, j) ∈ E

0, otherwise
(3.6)

which means all edges have the same weights. We decompose L using spectrum decomposi-

tion:

L = U⊤ΛU. (3.7)

Here, Λ is a diagonal matrix, in which the diagonal entries are the eigenvalues of L, and U

is the eigenvector set of L. Since the Laplacian matrix L describes the fluctuation of the

graph signal, its eigenvalues show how ”frequent” the fluctuations are in each eigenvector

direction. Thus, the eigenvectors of larger eigenvalues are defined as higher frequency bases,

and the eigenvectors of smaller eigenvalues are defined as lower frequency bases. Since the

column vectors of U form an orthonormal basis of the graph space, following [126], we

define the transform

F (x) = U⊤x (3.8)

to be the Fourier Transform of graph signal, and

F ′(x) = Ux (3.9)
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to be the Graph Inverse Fourier Transform (Graph IFT). This means, given any graph

function x ∈ RN×d, we can decompose x in N different frequency components:

x =
N∑
i=1

Ui(U
⊤
i x), (3.10)

where Ui ∈ RN×1 is the ith column vector of U , d is the dimension of the graph signal on

each vertex, and U⊤
i x is the frequency component of x on the ith frequency base.

Having Eq. (3.10), we can decompose a hand mesh into frequency components. Fig. 3.1

shows an example of a ground-truth mesh and its frequency decomposition result. The

x-axis is the frequencies from low to high. The y-axis is the amplitude of each component

in the logarithm. It is easy to observe that the signal amplitude generally decreases as

the frequency increases. Fig. 3.6 shows the cumulative frequency components starting

from frequency 0. We can see how the mesh shape changes when we gradually add higher

frequency signals to the hand mesh. In general, the hand details increase as higher frequency

signals are gradually included.

3.4 Image-Graph Ring Frequency Mapping

Image-Graph Ring Frequency Mapping (IGRFM) is a module designed to map image feature

maps to graph vertices. As our task is to recover high-fidelity hand mesh via frequency

decomposition supervision, this feature transform module is designed to retain information

from all frequency bands in the image feature map and transform it into a graph function.

As shown in Fig. 3.7, our IGRFM module includes the following steps. (a)→(b): Transform

image spatial feature to image frequency feature via image Fast Fourier Transform (FFT).

(b)→(c): Segment the image frequency feature using a ring manner. (c)→(d): Aggregate the

frequency feature in the rings via ring pooling and use them as the graph frequency features.

(d)→(e): Transform the graph frequency feature back into the graph spatial feature on each

graph vertex. We will explain the detailed design of each step in the following.
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[0,5] [0,10] [0,20] [0,50] [0,100]

[0,500]

[0,200]

[0,1000] [0,2000] [0,4000] [0,8000] [0,12336]

Figure 3.6: Frequency decomposition of a 3D hand mesh. Cumulative frequency components
start from frequency 0. The range shows the frequency band. For example, [0,20] means the
signal of the first 21 frequencies (lowest 21) added together. We can see how the mesh shape
changes when we gradually add higher frequency signals to the hand mesh. In general, the
hand details increase as higher frequency signals are included.

Image FFT. To get high-frequency features from the feature map, we first do a Fast

Fourier Transform (FFT) on the feature map (Fig. 3.7a). For input feature map Il of

resolution level l (l = 0, 1, or 2), we have the feature map in frequency space as

Fl,c(ωi, ωj) = FFTωj
(FFTωi

(Il,c(i, j))), (3.11)

where Il,c(i, j) is the feature map Il in channel c, (i, j) is the pixel location in the spatial

domain, FFTωj
is FFT along y axis. and FFTωi

is FFT along x axis. Besides, Fl,c(ωi, ωj) is

the frequency feature map of Il in channel c, and (ωi, ωj) is the pixel location in frequency

domain. Fig. 3.7b is the resulting frequency feature map. The inner part represents the lower

frequency information and the outer part represents high frequency information.

Ring segmentation. The ring segmentation is designed to segment the image frequency

feature along the frequency band so that the features of each frequency can be separated.

We segment the image frequency map in a uniform-spaced concentric ring manner. We

define a set of evenly spaced concentric ellipses on the image frequency feature map, with
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Image

FFT

Ring

Segmentation

Ring Average

Pooling

Graph 

IFT

(a) Image spatial 

feature

(b) Image frequency 

feature

(c) Frequency 

feature rings

(d) Graph frequency 
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(e) Graph spatial 
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Figure 3.7: We use Image-Graph Ring Frequency Mapping (IGRFM) to map image features
to graph features through frequency. (a) Input image spatial feature map. (b) Image
frequency feature after Fast Fourier Transform (FFT). (c) Frequency feature rings. The inner
rings are low-frequency features and the outer rings are high-frequency features. (d) Graph
frequency features after ring average pooling. (e) Graph spatial features transformed from
graph frequency features using Graph Inverse Fourier Transform (Graph IFT).

the outermost ellipse being tangent to the edges of the frequency feature map. The centers

of those ellipses are defined as the center of the image frequency feature map, and the major

and minor axes of the ellipses are paralleled to the edges of the feature map. Since in each

channel, the width and height of the image frequency feature map are the same, we let Wl

and Hl be the width and height of image frequency feature Fl,c(ωi, ωj) in level l channel c,

and we let Wl ≥ Hl for simplicity. Then, the major axis length of the kth innermost ellipse

Mk is

al,k =
k

N + 1
Wl, (3.12)

where N is the number of vertices of the target graph. Similarly, the minor axis length of

the kth innermost ellipse is

bl,k =
k

N + 1
Hl. (3.13)

The frequency ring Rl,k (shown in Fig. 3.7c) is defined as the area between Ml,k and Ml,k+1.

In our network, our image frequency feature map is square, meaning Wl = Hl, so that

rl,k = al,k = bl,k =
k

N + 1
Al, (3.14)

where Al is the edge length of the square image frequency feature in resolution level l, and

Rl,k is the radius of frequency ring Rl,k.
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Ring average pooling. Having the frequency rings, we design a ring average pooling

operation to aggregate the features in each frequency ring. The aggregation results will be

used as the graph frequency feature. Inside ring Rl,k, the ring average pooling is defined as

Gl(k) =
∑n

θ=1Fl(
al,k+al,k+1

2
cos 2π

n
θ,

bl,k+bl,k+1

2
sin 2π

n
θ)

n
, (3.15)

where al,k and bl,k is defined the same as in Eq. (3.14), θ represents the angle between the

line connecting the sample point and the origin, and the positive direction of the X-axis,

while n is the number of sample points. Eq. (3.15) means to uniformly sample n points in

the middle of ring Rl,k and define the average feature of these sample points as the ring’s

pooling result. In our design, the pooling result will be used as the graph frequency Gl(k).

In our network where Wl = Hl, Eq. (3.15) degenerates to

Gl(k) =
1

n

n∑
θ=1

Fl(r̄l,k cos
2π

n
θ, r̄l,k sin

2π

n
θ), (3.16)

where r̄l,k =
rl,k+rl,k+1

2
.

Graph Inverse Fourier Transform (Graph IFT). We do an Graph IFT on the graph

frequency feature Gl(k) to obtain the per-vertex graph spatial features. Similar to Eq. (3.9),

the graph spatial features of resolution l can be calculated as:

gl(v) = UGl(k), (3.17)

where U is the Graph IFT matrix, which is defined the same as in Eq. (3.9), and v is the

graph vertex.

Overall, the transformation from the image spatial feature map Il to graph spatial feature

gl is defined via Eq. (3.11)-Eq. (3.17).
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3.5 Frequency Decomposition Loss

Frequency decomposition loss. Conventional joint and vertex loss, such as the widely

used pre-joint error loss [88, 127, 128, 129, 78, 130, 131, 132, 133] and mesh pre-vertex

error loss [134, 135, 136, 137] commonly used in human body reconstruction, and Chamfer

Distance Loss [138, 139, 140, 141] commonly used in object reconstruction and 3D point

cloud estimation, all measure the error in the spatial domain. In that case, the signals of

different frequency components are aliased together. As shown in Fig. 3.1, the amplitudes

of low-frequency signals of hand shape are much larger than high-frequency signals, so

when alias happens, the high-frequency signals will be overwhelmed, which means direct

supervision in the spatial domain would mainly focus on low-frequency signals. Thus,

spatial loss mostly does not drive the network to generate high-frequency details. Our

experiments in Sec. 5.3 also demonstrate this.

To generate detailed information without being overwhelmed by low-frequency signals,

we design a loss function in the frequency domain. Specifically, we use graph frequency

decomposition (Sec. 3.3) to define our frequency decomposition loss as

LF =
1

F

F∑
f=1

log


∥∥∥U⊤

f V̂ − U⊤
f V

∥∥∥2∥∥∥U⊤
f V̂

∥∥∥∥∥U⊤
f V

∥∥+ ϵ
+ 1

 , (3.18)

where F = N is the number of total frequency components, Uf is the f th frequency base,

∥ · ∥ is l2 norm, ϵ = 1 × 10−8 is a small number to avoid division-by-zero, V̂ ∈ RN×3

and V ∈ RN×3 are the predicted and ground-truth vertex locations, respectively. During

training, for every frequency component, our loss reduces the influence of the amplitude of

each frequency component, so that information from different frequency components would

have equivalent attention. In Tab. 3.3, we demonstrate the effectiveness of the frequency

decomposition loss.
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(a) Scanned mesh (b) Coarse pose registration (c) Bidirectional vertex 

picking

(d) 3D Poisson inpainting

Figure 3.8: Example of Topology-correct hand mesh registration. (a) Scanned mesh with
topology flaws (red circle). (b) We use an optimization-based coarse pose registration to get
the coarse pose. (c) We then use bidirectional vertex picking to get the topology-correct part
of mesh vertices. (d) We finally use 3D Poisson editing to inpaint the topology-incorrect
part of the mesh vertices.

Total loss function. We define the total loss function as:

L = λJLJ +
3∑

l=1

[
λ(l)
v L(l)

v + λ
(l)
F L

(l)
F

]
, (3.19)

where l is the resolution level, while l = 1 is the lowest-resolution level and l = 3 is the

highest-resolution level. Besides, L(l)
J is 3D joint location error, L(l)

v is per-vertex error, L(l)
F

is the frequency decomposition loss, λ(l)
J , λ(l)

v , and λ
(l)
F are hyper-parameters. For simplicity,

we refer to L(l)
J , L(l)

v , and L(l)
F as LJ , Lv, and LF for the rest of the paper.

Following previous work [142, 136], we define 3D joint location error and per-vertex

loss as:
LJ = 1

NJ

∑NJ

j=1 ∥Ĵj − Jj∥,

Lv =
1
N

∑N
i=1 ∥v̂i − vi∥,

(3.20)

where Ĵj and Jj are the output joint location and ground-truth joint location, and NJ is the

number of joints. Besides, v̂i and vi are the estimated and ground-truth locations of the ith

vertex, and N is the number of vertices.
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Figure 3.9: Evaluations using Euclidean distance and MSNR under different noise ampli-
tudes in every frequency band. Each line of a different color indicates a frequency band.
The maximum and minimum frequencies are shown in the legend. On each line, every dot
means adding a random amplitude noise to the mesh. The noise amplitude of each dot is
evenly distributed over the ranges shown on the x-axis. The result validates that Euclidean
distance is more sensitive to error in low-frequency bands, and MSNR is more sensitive to
noise in high-frequency bands. Thus, compared to Euclidean distance, MSNR can better
measure the errors in high-frequency details.

4 Datasets and Annotation Generation

4.1 High-fidelity Hand Dataset

Our task requires detailed hand meshes for supervisory purposes. Given the challenges and

high costs associated with acquiring 3D scan data, obtaining such supervision on a large

scale is problematic. To address this, we have devised an alternative approach: creating

meshes from multiview RGB images through multiview stereo techniques. Due to the

relatively easy access to these resources, we have decided to adopt this method and utilize

the meshes generated in this manner as the ground-truth for our experimental work. We

do all our experiments on the InterHand2.6M dataset [91], which is a dataset consisting

of multiview images, rich poses, and human hand pose annotations. The dataset typically

provides 40-100 views for every frame of a hand video. Such a large amount of multiview

information would help with more accurate mesh annotation. To provide detailed hand

mesh supervision for training, a multiview stereo method is used to generate the scanned

mesh. In this paper, we use the mesh results provided in [110], which are generated using
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Original mesh

[60,119] [120,239] [240,479] [480,959]

[960,1919] [1920,3839] [3840,7679] [7680,12336]

Figure 3.10: We show examples of Noisy Meshes. The meshes from left to right are meshes
with a noise maximum amplitude of 0.6 and the frequency band changed from [60,119] to
[7680,12336]. For easier visualization, we magnify the vertices location changes by a factor
of 5.

the multiview methods of [143], and only use a subset of InterHand2.6M, due to the large

volumn of data in the original dataset. We show one example of the scanned mesh in

Fig. 3.8a. The hand details are clearly shown on the mesh surface. Those details can well

support our high-fidelity hand training, and the generation of those detailed high-fidelity

hand ground-truth is also budget-friendly.

4.2 Topology-correct Annotation Generation

Although the mesh generated using multiview stereo methods has good details, those meth-

ods do not guarantee a complete hand topological structure. To generate mesh supervision

with accurate details and a correct topological structure, we designed a mesh registration

method that uses the subdivided MANO topology to register a scanned mesh. As shown in

Fig. 3.8, the registration is divided into the following steps: (1) Optimization-based coarse

registration. We first register the overall translation, rotation, and subdivided MANO pose
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and shape parameters of the hand through an optimization method. (2) Bidirectional vertex

picking. Through bidirectional matching, we find a suitable vertex on the scanned mesh for

each coarse-registered vertex, and use that location as the final registration. (3) 3D Poisson

inpainting. For coarse-registered vertices that do not find a suitable match, we inpaint them

using Poisson mesh editing. We use the registration technique across 3 levels of hand mesh

templates, so that we can provide mesh supervision for all 3 levels of our network. The

details of the registration design will be discussed in the following.

Optimization-based coarse pose registration. Before registering the detailed shapes

and topology, it is crucial to align the hand pose of the subdivided MANO model with the

scanned mesh. This alignment ensures that the resulting hand pose matches the scanned

hand pose, and the further step would only need to consider detailed shapes. Here, we

implemented a two-stage optimization process, utilizing the joint location ground-truth

as annotations. Initially, we set the global translation of the hand, denoted as T , to the

wrist joint’s ground-truth location. This initial step simplifies the optimization process, so

it can converge more effectively. We initialize both MANO pose parameters θ and shape

parameters β as 0⃗. Then, we jointly optimize θ and T as

(θ1, T1) = argmin
θ,T

∥J (M(θ, β) + T )− J∥f , (3.21)

whereM is MANO hand model, J is MANO hand regressor, J is the ground-truth joint

locations, and ∥ · ∥f represent Frobenius norm. We use the joint location as a guideline to

jointly optimize the global translation and the MANO pose parameters.

Besides global translation and pose parameters, MANO shape parameters also influence

the length of the palm and fingers, and consequently influence the joint locations. Here, we

initialize T , θ, and β as T1, θ1, and 0⃗, respectively, so that the optimization would be easier

to converge and less likely to fall into local minimums. Then, we jointly optimize β, θ, and
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T as

(β2, θ2, T2) = argmin
β,θ,T

∥J (M(θ, β) + T )− J∥f . (3.22)

Here, β2, θ2, and T2 define the subdivided MANO coarse registration of the scanned mesh.

In Fig. 3.8b we show an example of the coarse registration result.

Bidirectional vertex picking. Having the correct hand pose, for each vertex pi on the

parametric hand Mp, we try to find a suitable vertex sj on the scanned mesh Ms, and use its

location vsj as the location of pi, a.k.a. vpi ← vsj .

We find the suitable vertex sj for pi using a bidirectional manner. First, we divide the

vertices in scanned mesh Ms into |{pi}| sets. The ith set is defined as

Ci = {sj|i = argmin
k
∥vsj − vpk∥2}, (3.23)

which is the set of sj whose closest vertex in Mp is pi. Considering the scanned mesh has

a much larger vertex number than the parametric mesh (500k vertices vs. no more than

12.4k vertices), each vertex in Ms does not need to be covered by more than 1 vertex in

Mp, but each vertex on Mp may cover one or multiple vertices on Ms. Besides, the scanned

mesh may have topology lost, which means there may be vertices on Mp that cover 0 vertex

on Ms. Under that assumption, if we use distance as the metric to determine the covering

relations, Eq. (3.23) is to find the set that pi covers in Ms. Here |Ci| ≥ 0. When |Ci| = 0, it

means there are no vertices on Ms that should be covered by pi.

Having the covering set Ci, we can pick one vertex from the set for each pi, and register

pi’s location to that vertex. Since Ci is the set in which every vertex is covered by pi, picking

any vertex in Ci for pi to register would be reasonable. In practice, we consider there may

be outlying vertices in the scanned mesh Ms, which means these vertices are far from any

vertex on Mp, and no vertex on Mp should cover them. Thus, to minimize the influence of

outliers and enhance robustness, we register pi to be the vertex in Ci that is closest to the
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original location of pi as

v′pi = min
sj∈Ci

∥vsj − vpi∥2,when Ci ̸= ∅ (3.24)

where v′pi is the registered vertex location of pi. In Fig. 3.8c, we show an example of the

registered vertices {pi} on Mp when Ci ̸= ∅.

3D Poisson inpainting. So far we registered the vertices {pi} on Mp when Ci ̸= ∅.

However, when Ci = ∅, the scanned mesh does not provide enough detailed information for

those vertices. To generate a complete hand mesh, we inpaint those vertices using the local

shape information from the coarse registered mesh. Here, we use a Poisson 3D mesh editing

approach [144] to achieve this. Specifically, we let Ω = {pi|Ci = ∅} to be the vertex set on

Mp that covers 0 vertices on Ms, and ∂Ω =
⋃

k{pk|pk ∈ N (pi), Ci = ∅, pk /∈ Ω} to be the

nearest neighbor vertices set of Ω on Mp, where N (pi) is the nearest neighbor vertices set

of pi. We define the Poisson Equation as

 Lv̂p = Lvp, pi ∈ Ω,

v̂p = v′
p, pi ∈ ∂Ω,

(3.25)

where v̂p is the registered vertex location in matrix form we try to solve, and vp and v′
p

are the coarse-registered vertices and the bidirectional-registered vertices in matrix form,

respectively. Besides, L is the Laplacian matrix of the mesh graph same as in Eq. (3.5).

Eq. (3.25) means the local details in Ω should follow the coarse registered mesh while the

edge of Ω should be the same with bidirectional registered mesh. We rewrite Eq. (3.25) in

matrix form as  L

I

 v̂p =

 Lvp

v′
p

 , (3.26)
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Table 3.1: Joint and mesh errors (Chamfer distance) of topology-correct mesh annotations of
3 resolution levels on InterHand2.6M. For joint error and Chamfer distance, lower is better.

Annotation Level Joint error/mm↓ Chamfer distance/mm↓
1 5.5 0.52
2 5.5 0.57
3 5.5 0.61

where I is an identity matrix. Then, we can solve v̂p using

v̂p =


 L

I


⊤  L

I




−1  L

I


⊤  Lvp

v′
p

 . (3.27)

Thus, we have

v′pi = v̂p,i,when Ci = ∅, (3.28)

An example of the completely registered mesh is shown in Fig. 3.8d. In this way, we

generate a topology correct hand mesh ground-truth with shape details. In Tab. 3.1, we

analyze the joint and vertex errors of our registration in 3 resolution levels.

5 Experiments

5.1 Implementation Details

We follow the network architecture in [142] to generate intermediate MANO results. We

use EfficientNet [69] as a backbone. The low-level, mid-level, and high-level features are

extracted after the 1st, 3rd, and 7th blocks of EfficientNet, respectively. For each image

feature, we use 1× 1 convolutions to deduce dimensions. The channel numbers of 1× 1

convolution are 32, 32, and 64 for low-, mid-, and high-level networks, respectively. After

that, we project the initial human hand vertices to the feature maps, and sample a feature

vector for every vertex using bilinear interpolation. The Graph Convolution Network (GCN)

graph has 778, 3093, and 12,337 vertices at each resolution level. At each level, the input
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Table 3.2: Module effectiveness Results on the InterHand2.6M [91] dataset. Bold number
means the best. For MPJPE and Chamfer distance (CD), lower is better. For MSNR, higher
is better. The proposed method improves the accuracy of hand surface details compared to
previous methods and our conference version (Conf-level 1-3). While our method generates
better shape details in a scalable manner, the general accuracy (MPJPE and CD) of overall
shape also increases.

Method MPJPE/mm↓ CD/mm↓ MSNR↑
MANO 13.41 6.20 -2.64
DIGIT [145] 13.36 6.32 -2.72
Conf-level 1 [17] 13.25 5.53 -2.70
Conf-level 2 [17] 13.25 5.49 -2.62
Conf-level 3 [17] 13.25 5.49 -0.68
Ours-level 1 13.09 5.06 -2.57
Ours-level 2 13.09 5.00 -2.19
Ours-level 3 13.09 5.00 -0.28

features go through a 10-layer GCN Residual Block, which outputs a feature vector and a

3D location at each vertex.

In the training process, we first train [142] network, and then use the pre-trained result

to train our scalable network. For training [142], we use their default hyper-parameters, set

the learning rate to 1× 10−4, and set batch size to 48. When training GCN, we set λJ to be

5, set λ(1)
v , λ(2)

v , and λ
(3)
v to be 1, and set λ(1)

F , λ(2)
F , and λ

(3)
F to be 5. The batch size is set to

24. The learning rate is set to 1× 10−4. After some code revision, the training process takes

about 6 hours on 1 NVIDIA GTX3090 GPU for 100 epochs. In reference, we use a smooth

kernel to post-process the mesh to reduce the higher-frequency noise in resolution level 3.

5.2 Quantitative Evaluation

We use mean per joint position error (MPJPE) and Chamfer distance (CD) to evaluate the

hand pose and coarse shape. Besides, to better evaluate personalized details, we also evaluate

our mesh results using the proposed Mean-frequency Signal-to-Noise Ratio (MSNR) metric.

Mean-frequency Signal-to-Noise Ratio (MSNR). Previous metrics for 3D hand mesh

mostly calculate the Euclidean distance between the results and the ground-truth. Although

62



Table 3.3: Ablation study on the feature skip connection design, new registration strategy,
and the effect of loss functions. Bold number means the best. The 2nd-4th lines show the
effectiveness of our Image-Graph Ring Frequency Mapping (IGRFM). The 5th line shows
the result of using the previous registration from the conference version. The 6th and 7th
lines show the effectiveness of our loss functions.

Method MPJPE/mm↓ CD/mm↓ MSNR↑
proposed 13.09 5.00 -0.28
w/o skip-connected feature 14.20 5.85 -0.52
w/ average pooling feature 13.39 5.23 -0.40
w/ projection feature 13.12 5.04 -0.34
w/o coarse registered ground-truth 13.25 5.37 -0.62
w/o frequency decomposition loss 14.47 5.47 -0.94
w/o per-vertex error loss 14.12 43.0 -0.51

Table 3.4: Quantitative results of removing high-frequency features in IGRFM. We remove
the high-frequency features and retain 10% and 1% of the lowest-frequency features in
IGRFM frequency rings, and show 3 levels of the quantitative results comparison.

Frequency Bands
Levels Level 1 Level 2 Level 3

MPJPE/mm↓ CD/mm↓ MSNR↑ MPJPE/mm↓ CD/mm↓ MSNR↑ MPJPE/mm↓ CD/mm↓ MSNR↑
Whole band 13.09 5.06 -2.57 13.09 5.00 -2.19 13.09 5.00 -0.28
10% low frequency 13.10 5.09 -2.58 13.10 5.01 -2.21 13.10 5.00 -0.31
1% low frequency 13.25 5.17 -2.57 13.25 5.07 -2.21 13.25 5.04 -0.32

in most cases, Euclidean distance can roughly indicate the accuracy of the reconstruction

results, it is not consistent with human cognitive standards: it is more sensitive to low-

frequency errors, but does not perform well in personalized detail distinction or detailed

shape similarity description.

Thus, we propose a metric that calculates the signal-to-noise ratio in every frequency

basis of the graph. We define our Mean-frequency Signal-to-Noise Ratio (MSNR) metric as

MSNR =
1

F

F∑
f=1

log(

∥∥∥U⊤
f V̂

∥∥∥∥∥∥U⊤
f V̂ − U⊤

f V
∥∥∥+ ϵ

), (3.29)

where F = N is the total number of frequency components and Sf is the signal-to-noise

ratio of the f th frequency component. Besides, Uf , V̂ , and V are defined the same as

in Eq. (3.18), and ϵ = 1 × 10−8 is a small number to avoid division-by-zero. Thus, the

maximum of Sf is 8. By this design, the SNR of different frequency components would not
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Figure 3.11: Visualized comparison with the conference version. We compare our results
with those of our conference version. Our results have better high-fidelity details (first row).
Moreover, our proposed method can solve some failure cases of the previous conference
version (second row).

influence each other, so we can better evaluate the high-frequency information compared to

the conventional Euclidean Distance.

We designed an experiment on InterHand2.6M to validate the effectiveness of our metric

in evaluating high-frequency details. We add errors of 8 different frequency bands to the

hand mesh. For each frequency band, the error amplitude drawn from 10 different uniform

distributions. As shown in Fig. 3.9, we measure the MPVE and MSNR for every noise

distribution in every frequency band, to see how the measured results of the two metrics

change with the noise amplitude in each frequency band. The result shows that in the

low-frequency part, MPVE increases fast when the noise amplitude increases (the upper

lines), but in high-frequency bands, the measured result changes very slowly when the noise

amplitude increases. MSNR behaves completely differently from MPVE. It is more sensitive

to noise in the high-frequency band than in the low-frequency band. Thus, compared to

Euclidean distance, MSNR better measures the error in high-frequency details. Fig. 3.10

shows a few examples of noisy meshes.

Evaluation on InterHand2.6M dataset. We report the mean per joint position error
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Figure 3.12: Visualization results of “w/o frequency decomposition loss” and ”w/o per-
vertex error loss” in Sec. 5.3. As shown, if we do not use frequency decomposition loss, the
mesh result we get tends to be smoother with fewer personalized details. If we do not use
the per-vertex error loss, the mesh’s low-frequency information is not well learned. The
mesh we generate exhibits overall shape deformation.

(MPJPE), Chamfer distance (CD), and Mean-frequency Signal-to-Noise Ratio (MSNR)

to evaluate the overall accuracy of the reconstructed hand meshes. Tab. 3.2 shows the

comparison of 3 resolution levels of our proposed method with previous methods and our

conference version. We observe that our proposed method outperforms previous mesh

reconstruction methods and our conference version. Moreover, while our method generates

better shape details in a scalable manner, the accuracy of our joint locations and the overall

shape of the output meshes also slightly increased (as indicated by MPJPE and CD). Here,

the MSNR is calculated after subdividing the meshes to the level 3 resolution.

In Fig. 3.11 we show some results compared with our conference version. We can see

our details are better than those of the conference version, Additionally, we can also solve

some failure cases of the conference version. The last column contains our current results.

5.3 Ablation Studies

Module effectiveness. We conduct several experiments to demonstrate the effectiveness

of different modules, our new data registration, and different loss functions. The results

are shown in Tab. 3.3. The 2nd-4th lines show the effectiveness of our Image-Graph
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Figure 3.13: Visualized results of removing high-frequency features in IGRFM. (Best viewed
at magnification.) We remove the high-frequency feature rings and retain 10% and 1% of
the lowest-frequency features in IGRFM frequency rings, and show the highest-resolution
visualized results comparison. As shown in the figure, removing the high-frequency feature
rings will cause a loss of the shape details.

Ring Frequency Mapping (IGRFM). Our feature mapping design outperforms the 3 other

feature mappings including the “no skip-connected feature”, “average pooling feature”,

and “projection feature”. From thees results, we observe that our projection-to-feature-map

skip connection design leads to performance improvements in all three metrics. The 5th

line shows the result of using the previous registration used in the conference version [17].

Our result outperforms the previous registration strategy. For the loss functions (in the 6th

and 7th lines), we observe that MSNR degrades when the frequency decomposition loss is

removed, indicating inferior mesh details. Removing the per-vertex error loss dramatically

increases the Chamfer distance, indicating that the overall shape is not well constrained.

The visualization results of the last 2 experiments are shown in Fig. 3.12. Using our new

registered mesh annotation for training can avoid some mesh flaws in the topology error

areas. If we do not use the frequency decomposition loss, the mesh result we get tends to be
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Figure 3.14: Comparison of registered mesh annotations. For each case, the left meshes are
our conference version results, and the meshes on the right are our proposed registration
method results. We can observe some topology flaws in the conference version results
(abnormal triangle faces in the red circles), while our proposed registration does not have
such flaws.

smoother with fewer personalized details. If we do not use per-vertex error loss, the mesh’s

low-frequency information is not well-learned. The mesh we generate will have an overall

shape deformation.

Removing high-frequency features in IGRFM. We further elaborate on the effective-

ness of high-frequency feature rings in the IGRFM module. We remove the high-frequency

features and retain 10% and 1% of the lowest-frequency feature rings before ring average

pooling, and show the quantitative and qualitative results of the resulting high-fidelity hands

in Tab. 3.4 and Fig. 3.13. We can see that with the removal of high-frequency image features,

the quantitative performance drops, and the details of the high-fidelity hands disappear.

IGRFM ring segmentation strategies. We also tried different ring segmentation

strategies for IFRFM. In our proposed ring segmentation, we keep the radius difference

between adjacent rings to be the same. In Tab. 3.5, we change the segmentation strategy

by keeping the same area difference between adjacent rings (“Area”), keeping the radius

difference to be the same as the graph frequency Λ in Eq. (3.7) (“Graph frequency”),
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Table 3.5: Comparison of different IGRFM ring segmentation strategies. From top to bottom:
Radius(proposed method): Keeping the radius difference between adjacent rings to be the
same. Area: Keeping the same area difference between adjacent rings. Graph frequency:
Keeping the radius difference to be the same as the graph frequency Λ in Eq. (3.7). Square
root of graph frequency: Keeping the radius difference to be the same as the square root
of graph frequency. Random segmentation: Randomly segment the image frequency band.
Our results show that our proposed radius segmentation has the best MSNR result.

Method MPJPE/mm↓ CD/mm↓ MSNR↑
Radius (proposed) 13.09 5.00 -0.28
Area 13.40 5.30 -0.34
Graph frequency 13.19 5.04 -0.33
Square root of graph frequency 13.23 5.00 -0.36
Random segmentation 13.11 5.00 -0.31

Table 3.6: The mesh sizes and the resources needed for generating different resolution levels
of meshes for both our proposed method and conference version. We observe that despite
our performance exceeding that of our conference version, the computational costs barely
increase.

Methods #parameter GFLOPS #vertices #faces
Baseline 14.5M 1.81 778 1538
Conf-level 1 [17] 14.5M 1.87 778 1538
Conf-level 2 [17] 14.5M 2.54 3093 6152
Conf-level 3 [17] 14.7M 4.81 12337 24608
Ours-level 1 14.5M 1.87 778 1538
Ours-level 2 14.5M 2.54 3093 6152
Ours-level 3 14.7M 4.83 12337 24608
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Input Images Ours-level 1 Ours-level 2 Ours-level 3 MANO MANO-200k Ground truth

Figure 3.15: Qualitative reconstruction results. The columns, from left to right, are input
images, our level 1-3 output meshes, MANO mesh, MANO mesh subdivided to 200k
vertices (i.e. the same number of vertices as our mesh), and the ground-truth, respectively.
We can see that even if we upsample MANO into the same number of vertices as our mesh,
it still does not provide personalized details comparable to our results.
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keeping the radius difference to be the same as the square root of graph frequency (“Square

root of graph frequency”), or randomly segment the image frequency band (“Random

segmentation”). Our results show that our proposed radius segmentation has the best MSNR

result.

Comparison of registered mesh annotations. We show in Fig. 3.14 a visualized

comparison of the registered mesh annotations using our proposed registration method with

those in the conference version. We can observe that our registered annotation does not have

the topology flaws that occur in the conference version.

Scalable design. We also demonstrate the scalable design of the proposed network

by analyzing the resources needed at each resolution level, and comparing that of our

proposed method with our conference version in Tab. 3.6. In general, higher resolution

levels require more computational resources in the network, and more resources to store and

render the mesh. Still, our approach supports scalable reconstruction and can be applied to

scenarios with limited computational resources. Moreover, despite our proposed method

outperforming our conference version, the computational costs barely increase. Here,

“baseline” means only generating the MANO mesh in our network.

Visualization results. The qualitative reconstruction results are shown in Fig. 3.15. We

observe that even when MANO is upsampled to 200,000 vertices, it still does not capture

personalized details, while our results provide better shape details.
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Chapter 4

Self-supervised High-fidelity Hand

Reconstruction

1 Introduction

High-fidelity 3D hand reconstruction has emerged as a critical component in modern AR/VR

applications. In consumer-grade immersive experiences, users consistently prefer realistic

hand representations over simplified parametric meshes such as MANO [146]. However,

accurately reconstructing hands in 3D remains challenging due to their complex geometry,

intricate articulations, and the significant difficulty in acquiring high-quality 3D training

data.

Recent advances in high-fidelity hand reconstruction, exemplified by methods such as

[147], have made substantial progress. However, as illustrated in Fig. 4.1, these approaches

rely heavily on 3D scanned ground-truth data for training supervision. Collecting such

high-fidelity 3D hand scans presents formidable challenges: it requires specialized hardware

setups, involves considerable expense, and most critically, suffers from limited scalability.

As noted in [68], comprehensive 3D hand capture typically requires elaborate equipment

like the lightStage system used in [91] — setups involving dozens of synchronized cameras
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Figure 4.1: (a) Existing high-fidelity 3D hand reconstruction methods typically rely on
specialized 3D scan ground-truth data, which require expensive hardware, time-consuming
procedures, and controlled environments. (b) Our self-supervised approach reconstructs
high-fidelity 3D hands directly from image inputs, leveraging general shape and detail priors
without requiring 3D annotations. This method reduces reliance on specialized 3D-scanned
data and broadens applicability across diverse subjects.

and light sources. A single hand scan acquisition can take anywhere from several minutes

to over half an hour, and subjects must be present at specific locations with controlled

environments. These constraints severely limit subject diversity and consequently restrict

the generalizability of trained models across different populations. These limitations are

evident in datasets like DeepHandMesh [110], which includes fewer than 10 subjects,

leading to models that struggle to accurately reconstruct high-fidelity details for hands

outside the limited training distribution.

To overcome these diversity limitations imposed by data constraints, we propose a self-

supervised approach that reconstructs high-fidelity 3D hands from ordinary RGB images

without requiring explicit 3D annotations. By leveraging readily available 2D hand pho-

tographs, our method fundamentally reduces dependency on scarce 3D-scanned data while

expanding applicability across a much broader range of subjects. The primary challenge

lies in reliably deriving accurate 3D information from 2D images alone. Fortunately, human

hands possess rich geometric priors, with both overall shape and surface details following
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patterns that correlate strongly with appearance. Existing techniques such as GeoWizard

[148] and Shape-from-Shading methods like [149] already demonstrate partial capability in

encoding appearance-to-geometry relationships without requiring hand-specific 3D ground

truth, providing valuable prior knowledge that circumvents limitations imposed by 3D data

scarcity. By designing a self-supervised framework that effectively leverages these priors

for both global structure and local surface details, we enable high-fidelity reconstruction

directly from image inputs without 3D annotations, offering a solution with substantially

reduced data requirements and significantly greater adaptability to diverse hands.

Based on these insights, we developed FlipFlop, a method that reconstructs textured

high-fidelity 3D hands using just two RGB images capturing the front and back of the hand.

At the core of our approach is a strategy for extracting and integrating general shape priors

and detailed geometry information from different off-the-shelf models through a frequency-

based regulation loss inspired by [17]. Unlike conventional per-vertex loss formulations,

this frequency-based regulation decomposes hand shape by frequency bands, enabling more

effective supervision of high-frequency details extracted from existing models. Simultane-

ously, it applies stronger constraints on low-frequency components to maintain alignment

with general hand shape priors derived from other sources. We further introduce a novel

color regulation loss that operates alongside shape detail modeling. Recognizing that local

color variations across a single hand are typically subtle, with surface appearance primarily

defined by geometric details rather than texture, this color loss enforces consistency in color

distribution while encouraging the model to express appearance variations through meaning-

ful surface geometry changes rather than superficial color adjustments. To accommodate

different practical deployment scenarios, we designed two complementary workflows: a

direct inference pipeline that requires no training data but involves optimization during

inference, and a fast inference pipeline that delivers rapid results through prior training

on collected hand image datasets. For objective evaluation, we created a comprehensive

benchmark dataset with ground-truth 3D scans, providing a reliable foundation for assessing
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reconstruction accuracy.

In summary, our contributions are as follows:

• We introduce FlipFlop, a novel self-supervised approach for reconstructing textured

high-fidelity 3D hands from just two RGB images without requiring 3D annotations,

significantly expanding the accessibility and applicability of detailed hand reconstruc-

tion.

• We develop a frequency-based shape regulation loss that enables the model to effec-

tively integrate priors from multiple sources, balancing between global structure and

fine details while leveraging the complementary strengths of different off-the-shelf

methods. We further introduce a specialized color regulation loss that encourages the

model to represent appearance variations through geometric surface details rather than

merely color variations.

• We present two complementary workflows—direct inference and fast inference—offering

flexible trade-offs between training requirements and inference speed to accommodate

different deployment scenarios.

• We establish a new benchmark dataset specifically designed for evaluating 3D hand

reconstruction quality from front and back RGB images, where FlipFlop demonstrates

consistently superior performance compared to state-of-the-art methods, particularly

in capturing fine surface details.

2 Related Works

Human hand reconstruction. 3D hand reconstruction has garnered significant attention

in recent years, with methods achieving promising results in reconstructing hand pose

and general shape. Traditional approaches [150, 82, 151, 152, 92, 142, 80, 83, 133, 108,

153, 154, 155, 156, 157, 158, 159, 160] often rely on parametric models like MANO
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Figure 4.2: Overview of our self-supervised pipeline for high-fidelity 3D hand reconstruction.
From a single RGB image, we obtain a coarse MANO [146]-based mesh, subdivide it
for higher resolution, and refine it with per-vertex displacements predicted by a detail
enhancement network. A differentiable renderer projects the refined mesh for image-space
supervision using multiple loss terms (e.g., perceptual lperc, silhouette lsil, Laplacian color
lcolor and normal lnormal, frequency-based lfreq). This framework allows end-to-end training
without requiring 3D ground-truth scans.

[146], which provide a simplified representation of hand shape and pose. However, these

MANO-based methods are limited in their capacity to capture high-fidelity details, as they

are constrained by the model’s low resolution and simplified mesh topology. Recent works

[110, 147, 161, 17] have attempted to address these limitations by employing high-fidelity

reconstruction techniques that leverage 3D scan data for training. Unfortunately, these

methods face scalability issues due to the high cost and effort required to acquire diverse

and detailed 3D hand scans, as datasets such as DeepHandMesh [110] are often limited

to a small number of subjects. In contrast, our approach eliminates the dependency on

3D annotations by leveraging self-supervised learning and incorporating shape and detail

priors from off-the-shelf methods, enabling high-fidelity reconstructions with improved

generalizability.

Self-supervised 3D human reconstruction. Self-supervised approaches for 3D human

reconstruction have emerged as an alternative to address the scarcity of 3D ground-truth

data. These methods often exploit human body priors to estimate general shape and depth

information from monocular images without requiring explicit 3D supervision. Notable
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works [103, 162] have shown the efficacy of using silhouette constraints, keypoint alignment,

and differentiable rendering to recover coarse human shapes. However, capturing fine details,

especially for articulated parts like hands, remains challenging due to the lack of high-

resolution priors and the inherent ambiguity in image-to-geometry mappings. Our method

bridges this gap by leveraging detailed priors from off-the-shelf models and incorporating a

frequency-based regulation loss, which effectively separates global shape constraints from

high-frequency details, thus enabling detailed reconstructions without 3D ground-truth

annotations.

Detail enhancement in 3D reconstruction. Enhancing fine-scale details in 3D re-

constructions has been explored in various domains, including face [163, 164] and object

modeling [165]. Techniques like Shape-from-Shading (SfS) [149] and neural rendering

[166] have demonstrated the potential of leveraging image cues to refine geometry. While

these methods focus on static objects or limited articulation, their principles inspire our

approach to enhance hand reconstructions. By integrating multi-scale priors and applying

losses that emphasize local surface variations, such as Laplacian color and normal losses, our

method achieves detailed hand reconstructions that capture subtle geometric and appearance

features. Furthermore, the use of a frequency-based regulation loss allows for adaptive detail

enhancement, ensuring a balance between global structure and local fidelity.

In summary, our work combines advancements in self-supervised learning, detail re-

finement, and 3D hand reconstruction to address the limitations of existing methods. By

eliminating the need for 3D ground-truth annotations and introducing novel loss functions,

we provide a scalable and effective solution for high-fidelity hand modeling.

3 Fully-supervised High-fidelity Hand Reconstruction

We introduce FlipFlop, a self-supervised analysis via synthesis method for high-fidelity 3D

hand reconstruction from only a pair of RGB images capturing the front and back views
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of a hand. Building upon coarse hand meshes generated by HaMeR [151], our approach

enhances these initial meshes with fine-scale details without the need for 3D ground truth

annotations. As depicted in Figure 4.2, our pipeline comprises several key components: a

coarse hand reconstruction module, a detail enhancement network, a differentiable renderer,

and multiple loss functions designed to preserve geometric and appearance details.

3.1 Coarse Hand Reconstruction

Our reconstruction pipeline begins by obtaining an initial hand mesh estimation using

HaMeR [151], which provides a MANO-based reconstruction with pose parameters θ ∈ R48

(16 joints × 3 rotation angles) and shape parameters β ∈ R10. The MANO functionM

maps these parameters to vertex positions:

vmano =M(θ,β) ∈ R778×3. (4.1)

Initial reconstruction. While HaMeR provides a good initialization for global hand pose

and shape, the base MANO mesh has significant limitations for high-fidelity reconstruction.

Its low resolution of only 778 vertices is insufficient for capturing fine-scale surface details

such as wrinkles, creases, and skin deformations. Additionally, challenging hand poses can

lead to misalignments between the reconstructed mesh and the input images, necessitating

further refinement.

Mesh subdivision. To support high-frequency geometric details, we apply the Loop

subdivision to the MANO template mesh in [17] to generate a more detailed mesh. In each

iteration, new vertices are introduced at edge midpoints, and vertex positions are updated

using weighted averages of neighboring vertices, increasing the mesh resolution from 778

to over 12,000 vertices, with faces expanding from 1,538 to roughly 25,000. The resulting

high-resolution mesh provides sufficient geometric freedom to capture millimeter-scale

surface details while maintaining smooth surface continuity through the subdivision rules.
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Additionally, the regular mesh topology created by this process is particularly beneficial for

subsequent graph convolution operations.

Optimization strategy. We implement the subdivision process efficiently using sparse

matrix operations, expressing the final subdivided mesh as:

vcoarse = SM(θ,β), (4.2)

where S is the subdivision matrix encoding the Loop subdivision rules. During training,

our method jointly optimizes the MANO parameters (θ,β) for improved global alignment

and the per-vertex displacements δv for detail enhancement. This dual optimization ensures

both accurate hand pose and shape, as well as high-fidelity surface details. The subdivided

mesh vcoarse serves as an ideal base template, preserving the anatomical structure defined by

MANO while providing the geometric flexibility needed for detailed reconstruction.

3.2 Detail Enhancement Network

Our detail enhancement network adopts an encoder-decoder architecture to translate 2D

image observations into 3D geometric details.

Image encoder. The image encoder takes a single RGB hand image I ∈ RH×W×3 as

input and extracts multi-scale features through a convolutional neural network. The encoder

outputs a feature vector f ∈ RD that encodes both global hand structure and local appearance

details.

Mesh decoder. The mesh decoder takes the image feature f and predicts per-vertex

displacement vectors δv ∈ RN×3 relative to the subdivided coarse mesh vertices, where N

is the number of vertices after subdivision. The decoder uses graph convolutional layers to

process mesh features while maintaining mesh topology. The enhanced mesh vertices are

computed as:

vdetailed = vcoarse + δv, (4.3)
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where vcoarse are the vertices of the subdivided HaMeR mesh.

3.3 Differentiable Rendering

To enable end-to-end training without 3D supervision, we employ a differentiable renderer

R that projects the enhanced 3D mesh back to 2D. We represent the scene lighting using

second-order spherical harmonics (SH) [167] with nine coefficients per color channel. Given

the enhanced mesh vertices vdetailed, surface normals N, and SH lighting coefficients γ, the

rendered image is computed as:

Ir = R(vdetailed,γ) =
9∑

i=1

γiHi(N), (4.4)

where Hi are the spherical harmonics basis functions. Both surface normals N and SH

lighting coefficients γ can be estimated using off-the-shelf estimation approaches, e.g.,

[168].

3.4 Loss Functions

We train our network using five complementary loss terms that work together to produce

high-quality reconstructions.

Perceptual loss. We employ a direct image-space supervision through rendered images:

Lperc = ∥I−R(vdetailed,γ)∥2, (4.5)

where R is our differentiable renderer and γ represents the spherical harmonics lighting

parameters. This loss provides a global supervision signal for both geometry and appearance.

Laplacian color and normal losses. To preserve fine-scale surface details, we introduce

Laplacian losses on both color and normal variations. For normal supervision, we leverage
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normal maps estimated through shape-from-shading [149]:

Lcolor = ∥∆C−∆Ctarget∥1, (4.6)

Lnormal = ∥∆N−∆Ntarget∥1 (4.7)

where the discrete Laplacian operator ∆ for vertex i and feature X (either color C or normal

N) is defined as:

∆Xi = Xi −
1

|N (i)|
∑

j∈N (i)

Xj (4.8)

Here,N (i) represents the one-ring neighbors of vertex i. The target Laplacians are computed

by projecting mesh vertices to the image plane and sampling corresponding features: colors

directly from the input image for ∆Ctarget, and normal values from shape-from-shading

estimates for ∆Ntarget. These Laplacian loss terms effectively capture local variations

while being invariant to global transformation, naturally emphasizing high-frequency details

crucial for realistic wrinkles and creases, while providing robustness to lighting and camera

variations.

Silhouette loss. The initial MANO pose θ and shape β parameters obtained from

HaMeR [151] provide a coarse reconstruction but may not perfectly align with the input

image. To address this, we jointly optimize these MANO parameters along with detail

enhancement during training. The silhouette loss ensures accurate alignment between the

projected mesh and the input hand mask M:

Lsil = BCE(Rmask(vdetailed,θ,β),M), (4.9)

whereRmask is a differentiable rendering function that generates a binary mask of the hand

mesh. The binary cross-entropy (BCE) loss effectively penalizes misalignment between the
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rendered and target masks:

BCE(P,M) =

− 1
|Ω|

∑
i∈Ω [Mi log(Pi) + (1−Mi) log(1−Pi)] ,

(4.10)

where Ω is the image domain, P is the rendered mask probability map, and Mi ∈ {0, 1} is

the binary target mask M at pixel i.

This loss serves multiple purposes: 1) refines initial MANO parameters for better

global pose and shape alignment; 2) guides the detail enhancement to maintain silhouette

consistency; 3) provides a strong supervision signal even without 3D ground truth; and

4) helps prevent geometric artifacts that could distort the hand silhouette. The gradients

from this loss flow back to both the MANO parameters (θ,β) and the vertex offsets δv,

allowing joint optimization of global pose and local details. This is particularly important

for capturing hand poses with self-occlusions or complex articulations where initial HaMeR

estimates may be imprecise.

Frequency loss. To ensure the enhanced mesh maintains the global structure while

adding plausible fine-scale details, we decompose the mesh geometry into different frequency

bands using spectral analysis. Given a mesh with N vertices, we first construct the graph

Laplacian matrix L ∈ RN×N :

L = D−W, (4.11)

where D is the degree matrix, and W is the adjacency matrix with cotangent weights.

The eigenvectors {ek}Nk=1 of L form an orthogonal basis for mesh deformation, ordered

by their corresponding eigenvalues λk from low to high frequencies. We decompose the

vertex positions into frequency components using this basis:

v =
N∑
k=1

αkek, where αk = vTek. (4.12)
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The low- and high-frequency components are then obtained by:

vlow =
K∑
k=1

αkek, vhigh =
N∑

k=K+1

αkek, (4.13)

where K is empirically set to capture the first 20% of the frequency spectrum. Fig. 4.4

shows a sketch of how frequency components correspond to the shape.

Our frequency loss applies different constraints to these components:

Lfreq = λlow∥vlow − vcoarse low∥2 + λhigh∥vhigh∥2, (4.14)

where the first term ensures the low-frequency components maintain the overall shape from

the coarse HaMeR reconstruction, and the second term acts as a noise regularizer to prevent

excessively high-frequency details that might lead to artifacts. The weights λlow and λhigh

balance between shape preservation and detail enhancement, empirically set to 0.2 and 1,

respectively. Fig. 4.4 shows how the hand shape changes when the frequency increases, and

indicates the frequency bands used in this paper.

This spectral approach has several advantages: 1) provides natural separation of global

shape and local details; 2) enables independent control over different geometric scales; 3)

helps prevent overfitting to noise in the input images; and 4) maintains mesh smoothness

without over-smoothing important features. The frequency decomposition is differentiable,

allowing end-to-end training while effectively guiding the network to produce geometrically

plausible detail enhancement.

Total loss. The total loss is a weighted combination of the aforementioned loss terms:

Ltotal =wpercLperc + wcolorLcolor

+wnormalLnormal + wsilLsil + wfreqLfreq. (4.15)
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3.5 Training and Inference

We provide two workflows for practical deployment:

Direct inferences In this workflow, we optimize the network weights and mesh details

directly on the test images without requiring pre-training. While slower, this approach can

potentially achieve better quality by tailoring the model to the specific input.

Fast inference. Alternatively, we pre-train the network on a large dataset of hand images.

During inference, a single forward pass produces detailed reconstructions, enabling real-time

applications.

In both cases, our method requires only RGB images for training and testing, making it

highly practical for real-world deployment.

4 Experiments

4.1 Training Dataset

We use the 11K Hands [169] dataset as our training set. This dataset was originally created

for palmprint recognition and contains over 11,000 images from 190 different subjects. Such

a dataset provides our model with a larger number of subjects and a wider variety of hand

images. Since our task involves using both the front and back of the hand as inputs for

self-supervised high-fidelity mesh reconstruction, the palmprint recognition dataset—with

its images of both sides of the hand and clear detailed features—serves as an ideal input

source for our purposes. Fig. 4.3(a) shows several examples of these training inputs. As can

be seen, the dataset provides very clear palmprint details.

4.2 HandScan Benchmark

Our dataset contains nearly 400 samples from 16 different subjects. Each sample is an

image of either the palm or the back of a hand, along with its corresponding 3D scan.
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Table 4.1: HandScan and 11k Hands dataset attributes. Compared with 11k Hands covers
more subjects, HandScan provides high-resolution 3D scans for 16 subjects with 3D scanned
shape ground-truth and MANO registration.

Dataset HandScan 11k Hands

Number of Subjects 16 190
MANO registration Yes No

Scanned 3D shape groundtruth Yes No
Total number of inputs 392 11,000

Scanner resolution 0.174 mm N/A
Number of Poses 6 4

Handedness Left & Right Left & Right

Table 4.2: SOTA comparison of our result with previous works. We evaluate the hand’s
general shape using Chamfer Distance (CD) and the details fidelity using FSNR [17]. As
shown in the table below, our methods outperform SOTA methods, especially in detail
measurements. We also report the average inference time. For CD and Inference Time, a
lower number means better performance. For FSNR, the higher the number, the better the
performance. The inference time is measured on a single NVIDIA A40 GPU.

Methods CD (mm)↓ FSNR↑ Inference Time (s)↓

HaMeR [151] 6.89 -3.2 0.11

Ours (Fast Inference) 6.90 -0.87 0.13
Ours (Direct) 6.90 -0.74 39.0

We use this benchmark to evaluate our reconstruction algorithm. Note that there is no

training set in our benchmark; the model is trained on the Hands11K [169] dataset and

then directly evaluated on HandScan. Tab. 4.1 shows the statistical information of our

dataset, and Fig. 4.3(b) presents some examples of our input images and the corresponding

3D scans. During data collection, to minimize the influence of background differences on

model transfer, we chose backgrounds similar to those in the training data. In this work, we

focus on unsupervised high-fidelity reconstruction, hence we simplify the requirements for

background generalization.

Data preprocessing. We use the fine-grain parametric hand mesh proposed in [17] to fit

the HandScan dataset. This mesh is parameterized in the same way as MANO but contains

12,337 vertices to ensure high-fidelity representation. Specifically, we employ a multi-step
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Table 4.3: We do an ablation study on the fast inference part of our method. The result
demonstrates the importance of each loss term. Removing any single loss, including
perceptual loss, Laplacian loss, silhouette loss, and frequency loss, it degrades our method’s
reconstruction performance, underscoring its contribution to the final result.

Methods Chamfer Distance (mm)↓ FSNR↑

w/o Perceptual Loss 6.93 -0.97
w/o Laplacian Losses 7.02 -1.88
w/o Silhouette Loss 31.3 -2.52
w/o Frequency Loss 6.90 -2.24

Ours (Fast Inference) 6.90 -0.87

fitting approach. First, we use Mediapipe [170], an off-the-shelf method, to extract 2D

keypoints and then perform a coarse alignment based on these keypoints. This alignment is

achieved through an optimization process, with the following energy function:

e2d = ∥ΠJ(M(θ, β, R, t))− p∥2, (4.16)

where Π is the projection matrix from 3D to 2D. J is the joint regressor same as in

MANO [146]. M is the MANO model. θ, β, R, and t are the hand pose, hand shape,

hand global rotation, and hand global translation, respectively. p is the 2D keypoint. At this

step, we first fix θ and β to optimize the coarse global rotation and translation, and then free

θ and β to optimize θ, β, R, and t together.

4.3 Implementation Details

We use Swin Transformer [171] (swin b) for image encoder, and a GCN network from [172]

as the mesh decoder. The output dimension of the GCN network is changed to 12,337 to fit

the mesh vertices number. We use the shape-from-shading approach [149] to generate the

normal map, and the pretrained method HaMeR [151] to generate the general hand mesh.

We also use Mediapipe [170] for keypoint extraction in Sec. 4.2, and use SAM [173] to

generate hand mask in Sec. 3.4. We set wperc, wcolor, wnormal, wsil, and wfreq to 2, 10, 1, 1,
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(a) 11k Hands (b) HandScan

Figure 4.3: Example data of 11k Hands (a) and our benchmark HandScan (b). For HandScan,
the top row is the input images, and the bottom row is the hand scan data. As shown in the
figure, our dataset scanning has good hand shape details for evaluation.

and 0.2, respectively. The learning rate is set to 1×10−4. We use PyTorch [67] to implement

our code. The framework is trained on a single NVIDIA A40 GPU for 10 epochs. The total

training time for the fast inference framework is around 7 hours.

4.4 Quantitive and Qualitative Results

SOTA comparison. As shown in Tab. 4.2, we measure the hand’s global shape using

Chamfer Distance (CD) and its fine details via Frequency Signal-to-Noise Ratio (FSNR),

from [17]. The results show our approach outperforms existing methods, especially in high-

frequency details. We also report the average inference times, which are measured using a

single NVIDIA A40 GPU. Note that lower values are better for both CD and inference time,

whereas higher values are preferable for FSNR.

Ablation studies. We verify the effectiveness of our loss functions using an ablation

study. The experiment is done using the fast inference part of our method. As shown in
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Figure 4.4: Example of decomposing a hand mesh into different frequency bands. We
accumulate frequency components from low to high, resulting in 12 hand meshes (M1 to
M12). The boundary between low and high frequencies is marked at K, roughly between
M9 and M10. The central figure illustrates the overall frequency decomposition of the hand
shape.

Tab. 4.3, by removing any of those loss functions, including perceptual loss, Laplacian loss,

silhouette loss, and frequency loss, the performance of our method drops.

Frequency of the hands. We show an example of the shape of the human hand of

different frequency components in Fig. 4.4. The figure in the middle is the frequency

decomposition result of the hand. We accumulate the frequency components from low to

high, and get 12 different hand meshes, namely from M1 to M12. In our experiments, we

divide low frequency and high frequency at the point K in the figure (somewhere between

M9 and M10).

Visualization of the normals, general shape, and mesh keypoints. We visualize the

normal maps, general shape mesh, and 2D key points that are used in our method in Fig. 4.5

from column 1 to column 3, left to right. In the third column, the green dots are the keypoint

generated from the off-the-shelf 2D keypoint estimator, while the red dots are from 3D hand

joint projection. We can see that our generated Normal maps have good detailed shapes, and
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Input Images Normal Maps

General Shape &

Keypoints

Figure 4.5: Visualization of the normal maps (2nd column from the left), general shape
mesh, and 2D keypoints (3rd column from the left) used in our method. In the third column,
green dots represent 2D keypoints from an off-the-shelf estimator, while red dots are the
projections of 3D hand joints. We can observe the details and general shape alignment of
the details provided by the normal map and general shape provided by conventional hand
mesh reconstruction.

the general shape also highly aligns with the input image.

Visualized examples. We visualize our result in Fig. 4.6 for both (a) fast inference and

(b) direct inference on HandScan. For direct inference, we also visualize our results on 11k

hands (bottom row). As shown in the figure, our result has a better detail shape and fidelity

than the baseline approach for both approaches.
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Input Images Ours Baseline Input Images Ours Baseline

(a) Fast Inference Results (b) Direct Inference Results

Figure 4.6: We visualize our results for both fast inference (a) and direct inference (b) on
HandScan. For direct inference, we also visualize our results on 11k hands (bottom row).
As shown in the figure, our result has a better detail shape and fidelity than the baseline
approach for both fast inference approach and direct inference approach.
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Chapter 5

Conclusion

This dissertation establishes a framework for assessing and creating high-fidelity 3D content,

guided by human perception. We begin by introducing Shape Grading, a user-study bench-

mark that compiles quality scores for a wide array of distorted 3D meshes, spanning twelve

ground-truth objects with seven distortion types at four severity levels. By comparing these

human judgments against automated metrics, we illustrate how existing fidelity measures

often fail to capture local details that play a critical role in perceived realism.

To address this shortcoming, we propose the Spectrum Area Under the Curve Difference

(SAUCD) analytic metric, which leverages the discrete Laplace-Beltrami operator and

Fourier transform to balance global structure with fine-grained surface details. By learning

frequency-specific weights aligned with subjective evaluations, our method offers improved

correlation with human perception. We then demonstrate the metric’s practical utility through

two hand-reconstruction pipelines. The fully supervised approach employs a frequency-split

network to preserve both coarse shape and detailed geometry, while the self-supervised

FlipFlop system reconstructs textured, high-frequency hand meshes from just two RGB

views.

Overall, this work closes crucial gaps in fidelity measurement and generation for AR/VR,

combining large-scale perception studies with a spectrum-based metric and advanced recon-
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struction techniques. The result is a robust pathway toward more immersive and realistic

virtual experiences.
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Appendix A

A Counterexample of the Original Cotan

Formula not being Positive Semidefinite

We provide a simple mesh example to show that the original Cotan formula in Eq. (2.2) does

not guarantee to be positive semidefinite. As shown in Fig. A.1a, we reconstruct a 4-vertex

mesh that is not Delauney triangulated and the mixed Voronoi areas of the vertices are not all

equal. We make the two faces on the bottom (v1v2v0 and v3v0v2) be two congruent obtuse

isosceles triangles (shown in Fig. A.1b). The apex angles of the two isosceles triangles are

2π
3

, and the base angles are π
6
. If we make the bottom two obtuse triangles form different

angles to each other, the top two triangle faces (v0v1v3 and v2v3v1) are always congruent

isosceles triangles (as in Fig. A.1c), and their apex angles vary continuously in the range of

(0, π
3
). Here, we make the bottom two obtuse triangles form a certain angle to each other so

that the apex angles of the top two triangles are equal to π
6
, which means their base angles

are 5π
12

. For simplicity, we set the equal sides of the isosceles triangles to be 1 (shown in

Fig. A.1a).

Now, we calculate the DLBO metric of this reconstructed mesh using the Cotan formula

in Eq. (A.3). First, we calculate the mixed Voronoi area for each vertex. Because of the

shape symmetry, we only need to calculate the mixed Voronoi areas for vertex v0 and v3.
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Figure A.1: A simple mesh example to show that the original Cotan formula does not
guarantee to be positive semidefinite.

The mixed Voronoi areas for vertex v2 and v1 are equal to v0 and v3, respectively. For vertex

v0, its mixed Voronoi area A0 can be calculated as the sum of 2 times of yellow area in

Fig. A.1b and 1 time of yellow area in Fig. A.1c, which means

A0 = 2× (
1

4
× 1

2
cos

π

3
) + 1× (0.5 tan

π

12
× 0.5)

=
4−
√
3

8
,

(A.1)

where 1
2
cos π

3
is the area of the outer triangle in Fig. A.1b and 0.5 tan π

12
× 0.5 is the area of

the yellow part in Fig. A.1c. For vertex v3, its mixed Voronoi area A3 can be calculated as

the sum of 1 time of green area in Fig. A.1b and 2 times of green area in Fig. A.1c, which

means

A3 = 1× (
1

2
× 1

2
cos

π

3
)

+ 2× (
1

2
× (sin

π

12
cos

π

12
− 0.5 tan

π

12
× 0.5))

=
3
√
3− 2

8
,

(A.2)

where sin π
12
cos π

12
is the area of the outer triangle in Fig. A.1c.
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Second, we calculate the DLBO matrix according to Eq. (2.2). The DLBO matrix of the

constructed mesh can be represented as

L =



w1

2A0

w0

2A0

w3

2A0

w0

2A0

w0

2A3

w2

2A3

w0

2A3

w4

2A3

w3

2A0

w0

2A0

w1

2A0

w0

2A0

w0

2A3

w4

2A3

w0

2A3

w2

2A3


, (A.3)

where

w0 = −(cot
5π

12
+ cot

π

6
) = −2,

w1 = 2(cot
5π

12
+ cot

π

6
+ cot

2π

3
) = 4− 2

√
3

3
,

w2 = 2(cot
5π

12
+ cot

π

6
+ cot

π

6
) = 4 + 2

√
3,

w3 = −2 cot
2π

3
=

2
√
3

3
,

w4 = −2 cot
π

6
= −2

√
3.

(A.4)

Then, we can calculate the symmetric part of L as

Lsym =
L+ L⊤

2
. (A.5)

We use Wolfram Mathematica [174] to calculate the eigenvalues of Lsym. The 4 eigenvalues

are

λ0 =
2− 2

√
3

3

A0

,

λ1 =
2 + 2

√
3

A3

,

λ2 =
A0 + A3 −

√
2(A2

0 + A2
3)

A0A3

,

λ3 =
A0 + A3 +

√
2(A2

0 + A2
3)

A0A3

.

(A.6)
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It is obvious that when A0 and A3 are both greater than 0, λ0, λ1, and λ3 will be greater than

0. However, for λ2, we have

λ2 =
A0 + A3 −

√
2(A2

0 + A2
3)

A0A3

=

√
A2

0 + A2
3 + 2A0A3 −

√
2(A2

0 + A2
3)

A0A3

≤
√

A2
0 + A2

3 + (A2
0 + A2

3)−
√

2(A2
0 + A2

3)

A0A3

= 0.

(A.7)

The equation holds if and only if A0 = A3. We know from Eq. (A.1) and Eq. (A.2) that

A0 ̸= A3. Thus, we have

λ2 < 0, (A.8)

which means in the given mesh example, the original Cotan formula is not positive semidefi-

nite.
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Appendix B

Proof of Positive-semidefiniteness of

Revised Cotan Formula

In this section, we prove that our revised version of the Cotan formula in Eq. (2.4) is positive

semidefinite. Here, the DLBO defined in Eq. (2.4) is

Lij =


1
2

∑
j∈N(i) A

− 1
2

i A
− 1

2
j | cotαij + cot βij|, i = j

−1
2
A

− 1
2

i A
− 1

2
j | cotαij + cot βij|, i ̸= j ∧ j ∈ N(i)

0, i ̸= j ∧ j /∈ N(i).

(B.1)

According to the Gershgorin circle theorem [175], for every eigenvalue λk of L,

λk ∈
⋃
i

Si, (B.2)

where Si is the ith Gershgorin disc. The Gershgorin disc is defined as

Si = {z ∈ C : |z − Lii| ≤ Ri =
∑
i ̸=j

|Lij|}, (B.3)
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where C means the complex space. Since L is a real symmetric matrix, according to

Eq. (B.1), the Gershgorin disc degenerates into a line segment in the real space as

Si = {s ∈ R : |s− Lii| ≤ Ri =
∑
i ̸=j

|Lij|}. (B.4)

From Eq. (B.1), we can also have

∑
i ̸=j

|Lij| =
∑

j∈N(i)

| cotαij + cot βij|
2
√

AiAj

= Lii. (B.5)

Note that Lii ≥ 0, so having Eq. (B.5), from Eq. (B.4) we get

Si = {s ∈ R : |s− Lii| ≤ Ri = Lii} ⇔ 0 ≤ Si ≤ 2Lii. (B.6)

Thus, according to Eq. (B.2), we have

0 ≤ λk ≤ 2max
i

Lii,∀0 ≤ k ≤ N, (B.7)

where N is the number of vertices. Then, L is positive semidefinite since L is a real

symmetric matrix and all its eigenvalues are greater than or equal to zero.

Q.E.D.
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Appendix C

Proof of SAUCD Satisfies Metric

Definition in Spectrum Domain

In this section, we prove that our SAUCD satisfies the metric definition in spectrum domain.

In metric geometry, a metric is defined as d(MA,MB) which satisfies the following four

conditions [176]

1. D(xA, xB) ≥ 0,

2. D(xA, xB) = 0 if and only if xA = xB,

3. D(xA, xB) = D(xB, xA), and

4. D(xA, xB) <= D(xA, xC) +D(xC , xB)

for any inputs xA, xB, and xC in the space.

In our case, we prove that if D(xA, xB) is defined as
∫
λ
|xA(λ)−xB(λ)|dλ as in Eq. (2.7),

D(xA, xB) is a metric in spectrum domain.

a) We prove D(xA, xB) ≥ 0. This is simply because

|xA(λ)− xB(λ)| ≥ 0 (C.1)
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for every λ, then

∫
λ

|xA(λ)− xB(λ)|dλ ≥ 0. (C.2)

b) We prove D(xA, xB) = 0 if and only if xA = xB. First, if xA = xB, then

D(xA, xB) = 0 by definition. Second, if ∃D(xA, xB) = 0 that makes xA ̸= xB, then

by definition of D(xA, xB), we have

∫ λ2

λ1

|xA(λ)− xB(λ)|dλ = 0. (C.3)

For Eq. (C.3), we get ∀λ ∈ [λ1, λ2], xA(λ) = xB(λ). This contradicts to the hypothesis

xA ̸= xB. So, if D(xA, xB) = 0, then xA = xB. In summary, D(xA, xB) = 0 if and only if

xA = xB.

c) We prove D(xA, xB) = D(xB, xA). Because |xA(λ) − xB(λ)| = |xB(λ) − xA(λ)|,

then
∫
λ
|xA(λ)−xB(λ)|dλ =

∫
λ
|xB(λ)−xA(λ)|dλ, which means D(xA, xB) = D(xB, xA).

d) We prove

D(xA, xB) <= D(xA, xC) +D(xC , xB). (C.4)

We first reform the left-hand side of Eq. (C.4) by separating the integration range as

D(xA, xB) =

∫
A>B

(xA − xB)dλ+

∫
B>A

(xB − xA)dλ, (C.5)

where we use
∫
A>B

(xA − xB)dλ to indicate

∫
{λ|xA(λ)>xB(λ)}

(xA − xB)dλ (C.6)

as the integration of xA − xB on the λ range where xA(λ) > xB(λ).
∫
A<B

(xB − xA)dλ

represents a similar meaning.

Using similar representations as in Eq. (C.5), we reform the two terms on the right-hand
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side of Eq. (C.4) as

D(xA, xC) =

∫
A>C

(xA − xC)dλ+

∫
C>A

(xC − xA)dλ (C.7)

and

D(xC , xB) =

∫
B>C

(xB − xC)dλ+

∫
C>B

(xC − xB)dλ. (C.8)

We further decompose the left-hand side of Eq. (C.4) as

D(xA, xB) =

∫
A>B

(xA − xB)dλ+

∫
B>A

(xB − xA)dλ

=

∫
C≥A>B

(xA − xB)dλ+

∫
A>C>B

(xA − xB)dλ

+

∫
A>B≥C

(xA − xB)dλ+

∫
C≥B>A

(xB − xA)dλ

+

∫
B>C>A

(xB − xA)dλ+

∫
B>A≥C

(xB − xA)dλ.

(C.9)

Similarly, we decompose the right-hand side of Eq. (C.4) as

D(xA, xC) +D(xC , xB)

=

∫
A>C

(xA − xC)dλ+

∫
C>A

(xC − xA)dλ

+

∫
B>C

(xB − xC)dλ+

∫
C>B

(xC − xB)dλ

=

∫
C≥A>B

(2xC − xA − xB)dλ+

∫
A>C>B

(xA − xB)dλ

+

∫
A>B≥C

(xA + xB − 2xC)dλ+

∫
C≥B>A

(2xC − xA − xB)dλ

+

∫
B>C>A

(xB − xA)dλ+

∫
B>A≥C

(xA + xB − 2xC)dλ.

(C.10)

In the 1st and 4th terms of Eq. (C.10), when xC(λ) ≥ xA(λ) > xB(λ) or xC(λ) ≥ xB(λ) >

xA(λ), we have 2xC − xA − xB ≥ xB − xA (replace xC with xB) and 2xC − xA − xB ≥

xA − xB (replace xC with xA). Similarly, in the 3nd and 6th terms of Eq. (C.10), when

xA(λ) > xB(λ) ≥ xC(λ) or xB(λ) > xA(λ) ≥ xC(λ), we have xA+xB− 2xC ≥ xB−xA
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(replace xC with xA) and 2xA + xB − 2xC ≥ xA − xB (replace xC with xB). Thus, we can

simplify Eq. (C.10) into

D(xA, xC) +D(xC , xB)

≥
∫
C≥A>B

(xA − xB)dλ+

∫
A>C>B

(xA − xB)dλ

+

∫
A>B≥C

(xA − xB)dλ+

∫
C≥B>A

(xB − xA)dλ

+

∫
B>C>A

(xB − xA)dλ+

∫
B>A≥C

(xB − xA)dλ

= D(xA, xB)

(C.11)

The equation holds if and only if

∫
C>{A,B}∨C<{A,B}

|xA − xB|dλ = 0. (C.12)

in which
∫
C>{A,B}∨C<{A,B} representation is defined similar to Eq. (C.6).

Q.E.D.

101



Reference

[1] Bob G Witmer and Michael J Singer. “Measuring presence in virtual environments:
A presence questionnaire”. In: Presence 7.3 (1998), pp. 225–240.

[2] Robert B Welch et al. “The effects of pictorial realism, delay of visual feedback, and
observer interactivity on the subjective sense of presence”. In: Presence: Teleopera-
tors & Virtual Environments 5.3 (1996), pp. 263–273.

[3] Hongyi Li et al. “Effects of immersion in a simulated natural environment on
stress reduction and emotional arousal: A systematic review and meta-analysis”. In:
Frontiers in Psychology 13 (2023), p. 1058177.

[4] Ernest Bielinis et al. “Effect of viewing video representation of the urban environ-
ment and forest environment on mood and level of procrastination”. In: International
Journal of Environmental Research and Public Health 17.14 (2020), p. 5109.

[5] Hyun In Jo, Kounseok Lee, and Jin Yong Jeon. “Effect of noise sensitivity on
psychophysiological response through monoscopic 360 video and stereoscopic
sound environment experience: a randomized control trial”. In: Scientific reports
12.1 (2022), p. 4535.

[6] Brid Sona, Erik Dietl, and Anna Steidle. “Recovery in sensory-enriched break
environments: integrating vision, sound and scent into simulated indoor and outdoor
environments”. In: Ergonomics 62.4 (2019), pp. 521–536.

[7] Wenfei Yao, Xiaofeng Zhang, and Qi Gong. “The effect of exposure to the natural
environment on stress reduction: A meta-analysis”. In: Urban Forestry & Urban
Greening 57 (2021), p. 126932.

[8] Nicola L Yeo et al. “What is the best way of delivering virtual nature for improving
mood? An experimental comparison of high definition TV, 360 video, and com-
puter generated virtual reality”. In: Journal of environmental psychology 72 (2020),
p. 101500.

102



[9] Jean-Christophe Servotte et al. “Virtual reality experience: Immersion, sense of
presence, and cybersickness”. In: Clinical Simulation in Nursing 38 (2020), pp. 35–
43.

[10] Giuseppe Riva et al. “Affective interactions using virtual reality: the link between
presence and emotions”. In: Cyberpsychology & behavior 10.1 (2007), pp. 45–56.

[11] Karl Lenz. “Behavior in Public Places. Notes on the Social Organization of Gath-
erings”. In: Goffman-Handbuch: Leben–Werk–Wirkung. Springer, 2022, pp. 291–
297.

[12] Kristine Nowak. “Defining and differentiating copresence, social presence and
presence as transportation”. In: presence 2001 conference, Philadelphia, PA. Vol. 2.
Citeseer. 2001, pp. 686–710.

[13] Gunilla Borgefors. “Distance transformations in arbitrary dimensions”. In: Computer
vision, graphics, and image processing (1984), pp. 321–345.

[14] Rundi Wu et al. “Multimodal shape completion via conditional generative adversarial
networks”. In: ECCV. 2020, pp. 281–296.

[15] Steven C Mills and Tillman J Ragan. “A tool for analyzing implementation fi-
delity of an integrated learning system”. In: Educational Technology research and
development 48.4 (2000), pp. 21–41.

[16] Tianyu Luan et al. “Spectrum AUC Difference (SAUCD): Human-aligned 3D Shape
Evaluation”. In: arXiv preprint arXiv:2403.01619 (2024).

[17] Tianyu Luan et al. “High Fidelity 3D Hand Shape Reconstruction via Scalable Graph
Frequency Decomposition”. In: CVPR. 2023, pp. 16795–16804.

[18] Rundi Wu and Changxi Zheng. “Learning to Generate 3D Shapes from a Single
Example”. In: arXiv preprint arXiv:2208.02946 (2022).

[19] Peizhen Lin et al. “3D mesh reconstruction of indoor scenes from a single image
in-the-wild”. In: International Conference on Graphics and Image Processing. 2022,
pp. 457–465.

[20] Xingkui Wei et al. “Deep hybrid self-prior for full 3D mesh generation”. In: ICCV.
2021, pp. 5805–5814.

[21] Xinxin Zuo et al. “Unsupervised 3d human mesh recovery from noisy point clouds”.
In: arXiv preprint arXiv:2107.07539 (2021).

103



[22] Rongfei Zeng, Mai Su, and Xingwei Wang. “CD2: Fine-grained 3D Mesh Re-
construction with Twice Chamfer Distance”. In: arXiv preprint arXiv:2206.00447
(2022).

[23] Rakesh Shrestha et al. “Meshmvs: Multi-view stereo guided mesh reconstruction”.
In: 3DV. IEEE. 2021, pp. 1290–1300.

[24] Marie-Julie Rakotosaona et al. “Learning delaunay surface elements for mesh
reconstruction”. In: CVPR. 2021, pp. 22–31.

[25] Zhihao Zhang, Xinyang Ren, and Xianqiang Yang. “Parametric chamfer alignment
based on mesh deformation”. In: Measurement and Control (2023), pp. 192–201.

[26] Audrius Kulikajevas et al. “Auto-Refining 3D Mesh Reconstruction Algorithm From
Limited Angle Depth Data”. In: IEEE Access (2022), pp. 87083–87098.

[27] Tao Hu et al. “Self-Supervised 3D Mesh Reconstruction from Single Images”. In:
CVPR. 2021, pp. 6002–6011.

[28] Zhiqin Chen et al. “Decor-gan: 3d shape detailization by conditional refinement”.
In: CVPR. 2021, pp. 15740–15749.

[29] Yinyu Nie et al. “Total3dunderstanding: Joint layout, object pose and mesh recon-
struction for indoor scenes from a single image”. In: CVPR. 2020, pp. 55–64.

[30] Paul Henderson and Vittorio Ferrari. “Learning to generate and reconstruct 3d
meshes with only 2d supervision”. In: arXiv preprint arXiv:1807.09259 (2018).

[31] Jiaxiang Tang et al. “Point scene understanding via disentangled instance mesh
reconstruction”. In: ECCV. 2022, pp. 684–701.

[32] Hari Santhanam, Nehal Doiphode, and Jianbo Shi. “Automated Line Labelling:
Dataset for Contour Detection and 3D Reconstruction”. In: IEEE Winter Conference
on Applications of Computer Vision. 2023, pp. 3136–3145.

[33] Nanyang Wang et al. “Pixel2mesh: Generating 3d mesh models from single rgb
images”. In: ECCV. 2018, pp. 52–67.

[34] Kyle Genova et al. “Local deep implicit functions for 3d shape”. In: CVPR. 2020,
pp. 4857–4866.

[35] Jan Bechtold et al. “Fostering generalization in single-view 3d reconstruction by
learning a hierarchy of local and global shape priors”. In: CVPR. 2021, pp. 15880–
15889.

104



[36] Maxim Tatarchenko et al. “What do single-view 3d reconstruction networks learn?”
In: CVPR. 2019, pp. 3405–3414.

[37] Panos Achlioptas et al. “Learning representations and generative models for 3d point
clouds”. In: ICML. 2018, pp. 40–49.

[38] Solomon Kullback and Richard A Leibler. “On information and sufficiency”. In:
The annals of mathematical statistics (1951), pp. 79–86.

[39] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. “3d point cloud generative
adversarial network based on tree structured graph convolutions”. In: ICCV. 2019,
pp. 3859–3868.

[40] Kai Wang et al. “A benchmark for 3D mesh watermarking”. In: Shape Modeling
International Conference. IEEE. 2010, pp. 231–235.

[41] Abdullah Bulbul et al. “Assessing visual quality of 3-D polygonal models”. In: IEEE
Signal Processing Magazine (2011), pp. 80–90.
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