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Abstract

Augmented Reality (AR) and Virtual Reality (VR) technologies show great potential in fields

like education, remote work, retail, real estate, entertainment, etc.. High fidelity in AR and

VR is important for user immersion, presence, and emotional engagement. Studies show that

realistic scenes increase immersion and emotional arousal, while a strong sense of presence

boosts emotional intensity. However, current methods for creating high-fidelity 3D worlds

are limited, with existing metrics like chamfer distance not accurately measuring realism.

Our research tackles these issues with a five-part plan: (1) Create a user study dataset for

initial human fidelity annotations, (2) Design a reality-reference 3D shape metric to measure

fidelity differences and adjust it with user study data, (3) Turn this metric into a loss function

to guide high-fidelity 3D shape reconstruction, (4) Develop a non-reference 3D shape metric

for measuring fidelity without real-world references, and (5) Use this non-reference metric

to guide 3D shape generation for higher-fidelity results. Preliminary results include a user

study dataset with 1,008 videos of 3D objects with different distortions, scored by 868

participants providing 24,304 scores. We developed a 3D shape metric aligned with human

perception and used it to enhance the fidelity of human hand mesh reconstructions. This

research aims to set a standard for assessing fidelity based on human perception, improving

high-fidelity 3D reconstruction and generation.
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1 Backgrounds

Augmented Reality (AR) and Virtual Reality (VR) technologies have shown their vast

potential across various domains. In education, VR enables immersive learning environments

that enhance students’ comprehension and memory through virtual field trips and scientific

experiments. For remote work, VR is used to replicate office settings, allowing team

members to engage in face-to-face meetings and collaborative efforts in virtual spaces,

thus boosting communication efficiency and team bonds. In retail, AR allows consumers

to try on clothing or visualize how furniture will look in their homes before purchasing,

using smartphones or specialized glasses. Moreover, VR is employed in the real estate

sector to offer virtual tours of properties, enabling potential buyers to remotely explore and

experience the layout of homes. Finally, AR and VR are popular in the entertainment and

gaming industries, providing unparalleled gaming experiences and interactive opportunities.

In AR & VR applications, fidelity is a hard-to-evaluate yet crucial factor. Previous works

show evidence that high fidelity enhances user immersion, presence, and co-presence, and

hence brings emotional impact on the user such as emotional arousal, enhancement, and

emotional interaction.

Fidelity, immersion, and emotional arousal. In psychology, immersion is defined as

the degree to which an individual feels absorbed by or engrossed in a particular experience

[74]. For immersions, experiments in [72] found that looking at the unrealistic scene

significantly lowers the immersion feeling score of the subjects compared with looking at

the realistic scene. Subsequently, the sense of immersion also impacts people’s emotional

arousal. Very recent research [33] analyze previous works including [6, 25, 57, 81, 83] and

found that higher immersions of nature exposure would significantly decrease the arousal of

fatigue in the subjects.

Fidelity, presence, and emotional enhancement. Presence is defined as an experience

of being in one place or environment, even when one is physically situated in another [74]
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Figure 1: The motivation of acquiring high-fidelity in 3D virtual world.

(sometimes also called situated immersion). [54] proposed a framework named Servotte-

Ghuysen framework to analyze the sense of presence. In the Servotte-Ghuysen framework,

fidelity serves as a crucial system factor for users to have a sense of presence, and a

high-fidelity environment can enhance users’ sense of presence. Research on VR-related

psychology also found that the sense of presence enhances the intensity of people’s emotional

feelings. For instance, [52] shows that the intensity of the subjects’ happiness feeling shows

a positive correlation with the sense of presence in a relaxing environment, and a negative

correlation with the sense of presence in an anxious environment, while the intensity of the

subjects’ anxious and sadness gives the opposite results.

Fidelity, co-presence and emotional interaction. Co-presence exists when people

sense that they are able to perceive others and that others are able to actively perceive

them [32] found the sense of co-presence increases when the level of realism increases.

The relation between co-presence and emotional interaction is not evidently clear yet. In

psychology, people would empirically use human interaction behavior to measure the sense

of co-presence, such as in [47]. Thus, it is highly possible that the co-presence would

strongly affects the emotional interaction among people.
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Ground truth mesh A. Mesh w/ pose error B. Mesh w/ smoothing error

Chamfer Distance:

Mesh B has smaller error

Mesh A Mesh B

Error

1.35

0.40

UHD:

Mesh B has smaller error

Mesh A Mesh B

4.96

2.65

SAUCD (Ours):

Mesh A has smaller error

Mesh A Mesh B

0.75

1.71

Figure 2: An example of how previous spatial domain 3D shape metrics (Chamfer Dis-
tance [8] and UHD [77]) deviate from human evaluation. We create Mesh A by adding
a small pose error to the ground truth mesh, and by applying a large smoothing kernel to
ground truth, we create Mesh B. Contrary to human perception, previous spatial domain
metrics evaluate Mesh B better than Mesh A. This indicates that while they are sensitive to
general shape differences, they tend to overlook high-frequency details. Note that different
metrics use different units of measurement.

Although fidelity is so important for people’s engagement in the VR-world and human-

human connection, existing research on high-fidelity 3D worlds remains at a trivial ex-

ploratory stage. High-fidelity mesh reconstruction is a widely studied direction, and signifi-

cant efforts have been made to enhance the details of 3D meshes. But we cannot answer if

these efforts truly enhanced fidelity. These works lack rigorous standards to demonstrate

whether they have indeed enhanced fidelity. Their evaluations rely on traditional metrics

based on L2 distance, such as chamfer distance, and visualization. These evaluation stan-

dards have clear flaws when assessing realism. For instance, Figure 1 shows an example
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concerning chamfer distance, illustrating the misalignment between this metric and human

perception of fidelity. Specifically, when we remove the wrinkles from the ground truth

mesh (resulting in Mesh B), the errors detected by previous metrics are not as significant

as when we slightly change the pose of the hand (Mesh A). However, humans tend to

sense a significant difference between ground truth and Mesh B, but barely recognize the

difference between ground truth and Mesh A. Other previous works evaluated the results

through visualization. These measurements may vary for different people, failing to capture

a statistical understanding of the realism perceived by the population, that is, how realistic

their results appear to the entire population. Moreover, visualizing a few results does not

reflect the method’s performance, especially since most of these methods do not claim to

be randomly selected. These issues are not only present in the 3D reconstruction field. As

generative AI evolves, the demand for generating high-fidelity 3D worlds is increasing, and

more attempts are being made to produce high-fidelity works, yet no one has answered what

fidelity is, how to measure fidelity, and what methods can truly reconstruct and generate

fidelity.

We are trying to address these challenges. Initially, we discovered that human perception

of fidelity follows predictable patterns. Various papers have studied human sensations

of realism and immersion, revealing statistical consistencies in these perceptions. [41]

found that the fidelity scores a group of subjects have on a certain object or behavior have

an obvious consistency. For most objects, the standard derivation of scoring distribution

would be less than 1 on a scoring scale of 1 to 5. This consistency among subjects enables

us to model human’s sense of fidelity. Specifically, it is necessary to collect data on

people’s reactions to various 3D objects and scenes first. Based on this data, we then

plan to establish a standard for assessing fidelity—a standard that reflects the statistical

expectation of evaluations from the entire dataset, not just individual responses. With this

established standard, we would further utilize it as a loss function to pursue high-fidelity 3D

reconstruction and generation. The detailed plan can be found in Sec. 4.
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2 Related Works

2.1 High-fidelity 3D Reconstruction & Generation

Current high-fidelity 3D reconstruction & Generation techniques utilize three main types of

shape representations: 3D meshes, voxels, and point clouds.

3D mesh-based methods. Previous works on mesh-based 3D reconstruction and

generation have focused on the human body [76, 89, 27, 88, 37], human hands [68, 61, 38],

human face [26, 75, 63, 11], and generation objects [59, 10, 73, 87, 86, 71]. These methods

have made significant progress in 3D reconstruction & generation, but they have not yet

answered the question of what is high-fidelity, how to measure fidelity, and how to really

reconstruct/generate high-fidelity shapes.

Voxel-based methods. Voxel-based methods offer approaches to represent the 3D shape

in voxels such as in [40, 84, 4, 90, 35, 58]. They are tasked with mapping three-dimensional

spatial coordinates to corresponding color and volume density outputs, which are then

integrated into final images through a process known as volume rendering. Despite these

strengths, voxel-based methods encounter difficulties in accurately defining isosurfaces

within the volume density, which are essential for representing the 3D geometry of the

scene. The prevalent method involves applying heuristic thresholds to these density values

to determine the isosurfaces. However, this approach tends to produce surfaces that are

noisy and imprecise due to insufficiently constrained level sets, leading to representations

that fail to accurately depict the structural details of the shape [67, 82]. Thus, in our work,

we mainly focus on 3D mesh-based representation.

Point-cloud-based methods. Point-cloud-based reconstruction & generation also has a

lot of existing works such as [95, 79, 48, 18, 23]. Many of them would have high-fidelity re-

sults. However, considering the sparse and unconnected nature of point cloud representation.

high-fidelity point cloud results often require much finer-grained representation (probably

6



millions of points) and computational resources. By contrast, using 3D mesh representation

is more computationally friendly when achieving the same level of fidelity.

2.2 Image Quality Assessment

Image quality assessment methods are close to our research in 3D shape evaluation. It could

be a good reference and inspiration for our research on design 3D shape metrics.

Full-reference image quality assessment (FR-IQA). FR-IQA evaluates image quality

by comparing a reference image to a distorted version, focusing on their dissimilarities. A

traditional and widely used metric in this domain is the peak signal-to-noise ratio (PSNR).

PSNR, known for its simplicity, calculates pixel-wise fidelity, providing a direct measure

of image degradation. However, it falls short in accounting for the complexities of the

human visual system (HVS), which does not strictly interpret image quality based on

pixel accuracy. This discrepancy led Wang et al. to develop the Structural Similarity

(SSIM) index, which assesses the similarity in local patches, offering a more perceptually-

aligned measure of image quality [69]. This innovation has spurred extensive subsequent

research, introducing more sophisticated, hand-crafted features that more closely mimic

human perception. Notable developments include advanced metrics discussed in studies by

[80, 12, 93, 30, 91]. These metrics enhance the traditional approach by integrating various

perceptual aspects into the assessment of image quality.

No-reference image quality assessment (NR-IQA). No-reference image quality assess-

ment (NR-IQA) presents unique challenges due to the absence of reference images to guide

the evaluation. Within NR-IQA, there are two distinct subtasks: technical quality assess-

ment [20] and aesthetic quality assessment [45]. Technical quality assessment is primarily

concerned with the technical attributes of an image, such as sharpness, brightness, and noise.

This approach is typically used to gauge the fidelity of an image relative to the original scene

and assesses the accuracy of image acquisition, transmission, and reproduction processes.

It focuses on objective measures that are quantifiable and replicable. In contrast, aesthetic
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quality assessment deals with the subjective perceptions of viewers regarding an image’s

visual appeal. This subtask considers aesthetic elements like composition, lighting, color

harmony, and overall artistic impression. The evaluation of aesthetic quality is inherently

more subjective than technical quality assessment, heavily depending on individual pref-

erences and cultural influences. Both subtasks of NR-IQA, despite their differing focuses,

involve assessments that are influenced by factors such as lighting, color accuracy, and

sharpness. Traditional NR-IQA methods typically rely on natural scene statistics (NSS)

[92, 39, 44, 42]. However, recent advancements by [7] have introduced new features based

on pseudo-reference images, which have shown significant improvements over methods

based solely on NSS. These developments underscore the evolving nature of image quality

assessment in the face of emerging technologies and methodologies.

2.3 Mesh Quality Assessment

Mesh quality assessment methods are also close to our research in 3D shape evaluation.

However, existing approaches cannot satisfy our requirements to measure the fidelity of a

given 3D shape. Previous works include the following categories.

Metrics in 3D mesh reconstruction. Chamfer Distance [8] is a popular metric used in

3D mesh reconstruction tasks such as those in [34, 70, 96, 85, 55, 51, 94, 28]. Other spatial

domain metrics, such as 3D Intersection over Union (IoU) in [22, 13, 46, 17, 60, 53]. F-

score in [66, 16, 5, 62], and Unidirectional Hausdorff distance (UHD) in [77] are commonly

focused on the geometry accuracy of mesh shapes. These metrics can provide accurate

geometry measurements, but they are not designed to align with human evaluation. Deep-

learning-based methods such as Single Shape Fréchet Inception Distance [78] are also used

in 3D reconstruction. While these metrics have the capacity to adapt from human evaluation,

they are more like black boxes, with performances subject to dataset size and annotation

bias. Moreover, most previous works miss out on user study validation to verify if their

metrics align with human evaluation.
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3D shape generation metrics. Multiple metrics have been used in 3D shape generation,

such as Minimal Matching Distance (MMD) [3], Jensen-Shannon Divergence (JSD) [29],

Total Mutual Difference (TMD) [77], Fréchet Pointcloud Distance (FPD) [56], etc.. These

metrics are designed to measure the differences between the generated distributions, while

our task is to build a metric to compare the shape of two meshes.

3D mesh compression and watermarking metrics. Previous works [64, 9, 31, 14] fo-

cused on evaluating mesh errors in mesh compression and watermarking. Since compression

and watermarking pursue mesh errors that cannot be detected by humans, they mainly focus

on barely noticed errors. However, our task is to build a metric that can handle generally

occurring errors that happen in 3D reconstruction tasks and applications.

3 Problem Formulation

3.1 Fidelity

Fidelity is a personalized concept. The fidelity of the same object can be different in different

people’s eyes. Thus, the mathematical definition of fidelity must be based on the statistical

result of a group of people’s opinions. Apart from the shape, the context of the shape can

also influence the human’s cognition of fidelity. Typically, shape context includes color,

lighting, materials, and backgrounds. Thus, in our research, we defined the fidelity of a 3D

shape as:

F (x; c) = Es∈Sf(x; s, c), (1)

where f(x; s, c) is a scalar that represents the fidelity of shape x under context c in subject

s’s opinion. The larger the better. S is a collection of subjects. Thus, F (x; c) is the fidelity of

shape x under context c in subject set S. Theoretically, S could be any subject collection. In

our research, we aim to find out the object fidelity in the opinion of the whole population, so

we define S as the whole population, and we sample a subset S̃ from S to do our user study.
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Here, we make the assumption that S̃ is uniformly sampled from the whole population S as

many dataset annotations and user study tasks did.

To build a fidelity metric, we need to design a function to fit F (x; c) in Eq. (1) as

F̂ (x; c) = argmin
F̂ ′

Σx(F̂
′(x; c)− F (x; c))2, (2)

where F̂ (·) is the fitting function of F (·). In practice, F̂ (·) could be designed as an analytic-

based function or a neural network.

3.2 Reality-referenced Fidelity

Fidelity should be a non-reference concept, meaning F (x; c) in Eq. (1) does not require a

comparison with another shape. However, the measurement of fidelity could be challenging.

Considering that the real objects in most cases have very high fidelity, using the real objects

to serve as a reference for fidelity would make the evaluation of fidelity easier, while still

giving us reasonable results. Thus, in certain applications such as reconstruction, we try to

use reality-referenced fidelity as a substitute for fidelity. The reality-referenced fidelity is

defined as:

Fr(x, x0; c) = Es∈Sfr(x, x0; s, c), (3)

where x0 is the reference shape, Fr(·) and fr(·) are the reality-referenced fidelity of subject

set S and subject s, respectively. Different from F (·) and f(·), Fr(·) and fr(·) are the lower

the better. The rest of the variables are defined the same as in Eq. (1).

To build a Reality-referenced fidelity metric, we need to design a function to fit

Fr(x, x0; c) in Eq. (3) as

F̂r(x, x0; c) = argmin
F̂ ′
r

Σx(F̂
′
r(x, x0; c)− Fr(x, x0; c))

2, (4)

where F̂r(·) is the fitting function of Fr(·). In practice, F̂r(·) could be designed as an

10



analytic-based function or a neural network.

3.3 High-fidelity Reconstruction

In high-fidelity reconstruction, we aim to reconstruct a 3D shape that has lower reality-

referenced fidelity to the real ground-truth shape. Specifically, high-fidelity reconstruction

can be defined as:

x̂r = argmin
x

F̂r(x, x0; c0), x = R(I; c0), (5)

where x̂r is the high-fidelity reconstructed shape, R(·) is a reconstruction function, which is

typically and neural network. x0 is the ground-truth shape. I is the input, which could be an

image, a coarse shape, or other input data structures. Other variables are defined the same as

in Eq. (3).

3.4 High-fidelity Generation

In high-fidelity generation, we aim to generate a 3D shape that has high fidelity. Specifically,

high-fidelity reconstruction can be defined as:

x̂g = argmax
x

F̂ (x; c0), x = G(C; c0), (6)

where x̂g is the high-fidelity generated shape, G(·) is a generative function, which is typically

a generative neural network. C is the condition of G(·), which could be an image, a coarse

shape, other input data structures, or a constant(unconditional generation). Other variables

are defined the same as in Eq. (1).

4 Research Plan

As illustrated in Fig. 3, our research plan has 5 parts, covering dataset, metric, and model

design: (1) Create a user study dataset to provide initial human annotations of fidelity. (2)

11



Figure 3: Research Plan. Please see Sec. 4 for further details.

We plan to design a reality-reference 3D shape metric to measure the fidelity difference

between reconstructed 3D shape and real-world 3D shape and adjust it using the annotations

in the user study dataset in (1). 3) Transform this metric into a loss function and use it to

guide 3D shape high-fidelity reconstruction. We will conduct this comprehensive plan in

2 years. Below, we provide an overview of the core concepts of each phase. (4) We plan

to design a non-reference 3D shape metric to measure the fidelity without the reference of

real-world shapes. (5) Use the non-reference metric to guide 3D shape generation, enabling

the generative model to create higher-fidelity 3D shapes. We plan to spend 4 months on

each of the parts. The detailed plan will be illustrated in the following sections.

4.1 User Study Dataset: 4 months

To develop a 3D model that aligns with human perception, it’s essential to first gather the

annotations of human preferences regarding 3D objects. Our approach involves creating

a dataset of diverse 3D shapes, each subjected to various distortions that are encountered

in real-world generative models. We will invite multiple subjects to evaluate each object

and distortion, assigning scores that reflect their preferences. Through the aggregation and

analysis of these scores, we can establish a set of human preference annotations for the 3D

shapes in our dataset.

The scoring of our dataset would be 2-fold. For the first part of the annotation, we would
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Figure 4: User study process design. Please see Sec. 4.1 for further details.

ask the subjects to do a reality-referenced evaluation using a tournament-style approach.

Specifically, as shown in Fig. 4, we would present to the subjects 2 shapes that originated

from the same 3D real object. For each time of the evaluation, we would give the subject a

ground-truth shape as a reference. The subject will evaluate the differences between each

given shape and the groundtruth shape, and give an opinion of which one is better. After

several rounds of comparison, we can determine a ranking of which subject performs better,

and then convert this ranking into scores. If we acquire each subject’s fidelity opinion by

directly asking them to give a score, the scales of scoring among different subjects are

inconsistent. Subjects with a wider scoring range and more dispersed distribution will have

a higher scoring weight. A tournament-style evaluation strategy can effectively avoid the

bias of unequal scoring weights among different subjects. By using this method, we can

obtain human annotations of object fidelity that are referenced to reality.

For the second part of the annotation, we continue to use a tournament strategy similar

to the first part. Unlike the first part, here we do not provide the subjects with a ground

truth. Instead, we need to compare which of the two shapes, both derived from the same

real-world 3D shape, has higher fidelity without a reality reference. Please note that the
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Figure 5: Reality-referenced 3D shape fidelity metric design.

scores obtained from this comparison are still non-referenced evaluations. The comparison

here is merely a step of the tournament; it qualitatively assesses which one is better rather

than quantitatively measuring the distance of fidelity like a full-referenced evaluation would

do. Thus, we can obtain non-referenced human annotations of fidelity through this part of

the annotation. Additionally, to remove outliers from the annotations, we will employ the

Interquartile Range (IQR) method [15] in both parts of the annotation, a robust statistical

technique designed to identify and exclude anomalous data points.

As mentioned in Section Sec. 3, the impact of context on shape evaluation is also

significant. Thus, we plan to design various types of contextual changes to analyze the

similarities and differences in human scoring results under different contexts. Our context

variations will include common factors that affect human perception, such as changes

in lighting, surface color of the shape, and texture variations, etc.. After analyzing the

differences and similarities brought by each context, our shape fidelity score will be the

average of these contexted scorings.

A preliminary dataset has been constructed to test our method, with further details on its

design and analysis available in Sec. 5.1. In the future, we plan to enrich our dataset with a

broader range of objects and distortion types generated from recent 3D shape generation

approaches.
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4.2 Reality-referenced 3D Shape Metric: 4 months

To develop a network that is aligned with human perception for 3D models, we recognize

the necessity of annotations based on human preferences. However, the extensive process of

annotating a diverse array of objects and their distortions is resource-intensive, presenting a

challenge in scaling our dataset. This limitation raises concerns about potential overfitting if

the network is trained directly on a restricted dataset. To mitigate this, we propose to design

some analytic-based features captured from the observation of human perception.

Specifically, we plan to leverage frequency analysis of 3D shapes, which is refined by

human evaluations from our user study dataset. The core idea is to treat each 3D shape

as a signal and perform a frequency analysis on the signal. This method integrates the

energy of the spectrum, with the consideration of the varying human sensitivity to different

frequencies. By optimizing a vector that represents human sensitivity weights, we can

construct a metric based on the user study dataset annotations. This frequency metric

design is less susceptible to the limitations posed by the dataset’s size and diversity, which

minimizes the risk of overfitting and enables a more robust evaluation of 3D shapes that

align with human perception.

An initial version of our metric has been developed, and preliminary comparisons with

established metrics are detailed in Tab. 2. In the future, we plan to refine this metric further,

leveraging an expanded dataset from a broader user study to enhance its accuracy.

4.3 High-fidelity 3D Hand Reconstruction: 4 months

With the development of a reality-referenced 3D metric, our next step is to utilize this metric

as guidance to do high-fidelity 3D reconstruction. This network is designed to operate

in the frequency domain, utilizing 3D mesh as the representation for shapes. Given that

the frequency information of 3D mesh is essentially one-dimensional, we leverage signal

processing techniques for the analysis and generation of 3D mesh shapes. This idea allows
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MVPE Loss

GCN1 GCN2 GCN3

CNNs

Human-aligned 3D shape Prior

Figure 6: Simple 3D prior network on human hand reconstruction task.

Figure 7: Non-referenced 3D shape fidelity metric design.

us to adapt the extensive range of existing models in one-dimensional signal processing

tasks, such as those used for audio and medical signals. Furthermore, the metric previously

developed will be converted into a loss function, ensuring that the reconstruction of the

high-fidelity aligns more closely with the human perception of fidelity in the 3D world.

In Fig. 6 we show an initial example of our human-aligned 3D prior network designed

for human hand inputs. The results can be found in Fig. 10. In future work, we will deploy

our network for more generation 3D objects.

4.4 Non-referenced 3D Shape Fidelity Metric: 4 months

Considering the need for a deeper understanding of 3D shape for non-referenced metrics,

and given that our training data is quite limited, we plan to leverage a pre-trained large

language model to design our non-referenced 3D shape fidelity metric. As shown in Fig. 7,

we intend to use a 3D-LLM model (such as [19]) as the metric function. Its input will be the
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Figure 8: High-fidelity 3D human generation. Please see Sec. 4.5 for further details.

evaluated 3D shape and a single-sentence prompt. We will set the prompt as a fixed input,

such as ”Evaluate the fidelity of the 3D shape”. Then, we will input the language output

into another LLM to obtain a fidelity score. During training, we will fix the latter LLM

and fine-tune the former 3D-LLM using LoRA [21]. With this design, we can fine-tune an

existing LLM with minimal data to achieve the required metric.

4.5 High-fidelity 3D Human Generation: 4 months

We plan to use a voxel-based approach for high-fidelity human body generation. As shown

in Fig. 8, our approach involves incorporating latent features into voxels and rendering these

features to obtain feature maps from different angles. In the post-processing stage, we use

techniques similar to latent diffusion to recover the feature maps and employ a decoder

to generate high-fidelity rendered images. By calculating the SDS loss [50] during the

diffusion process, we can optimize our voxel representation. Furthermore, with our specially

designed non-referenced metric, we can transform the generated results into 3D mesh and

further enhance the fidelity of the generated outcomes.
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Figure 9: The preliminary system of our online user study [36].

5 Preliminary Results

5.1 User Study Dataset

We try to build a simple user study dataset as illustrated in Sec. 4.1. We choose 12 objects

as ground truth 3D triangle mesh from public object/scene/human mesh datasets such as

[43, 24, 65] and commercial datasets such as [1, 2]. These objects span various categories,

including humans, animals, buildings, and plants. For each, we generate 7 types of common

distortions in 3D reconstruction, each with 4 levels of severity, resulting in 28 variants per

object. Each variant is rendered into three videos using different mesh materials, totaling

1,008 videos. We adopt a pairwise comparison method for scoring, similar to the approach

in [49], ensuring a fair distribution of scores among the variants. Overall, 868 participants

(536 males, 316 females, and 16 others) provided 24,304 scores across all objects and

materials. In Fig. 9 we show our annotation website design and in Tab. 1, we show our

dataset error analysis.
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Dataset Raw w/ IQR removal
number of valid scores 24304 23775
Scoring range [0, 6] [0, 6]
95% confidence interval 0.318 0.303
Relative 95% confidence interval 5.33% 5.04%

Table 1: Dataset statistics and error analysis.

Figure 10: The preliminary results of high-fidelity human hand reconstruction [38].

5.2 Analytic-based 3D Shape Metric

We designed a human-aligned 3D shape metric as illustrated in Sec. 4.2. We optimized and

evaluated our metric on the previously built dataset. The results are shown in Tab. 2.

5.3 High-fidelity Human Mesh Reconstruction

We show some preliminary results in Fig. 10 for the network designed in Fig. 6. We observe

the detail enhancement on the human hand surface, which has higher fidelity in human

perception.
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MetricsObject No. 1 2 3 4 5 6 7 8 9 10 11 12 Overall
Chamfer Distance [8] 0.54 0.15 -0.10 0.57 -0.06 -0.12 -0.20 0.07 0.04 0.30 -0.20 0.17 0.097
Point-to-Surface 0.45 0.19 -0.04 0.66 -0.08 -0.25 -0.32 -0.20 0.01 0.13 -0.21 -0.12 0.017
Normal Difference 0.46 0.11 0.06 0.28 0.11 0.21 0.29 0.47 0.27 0.39 0.11 0.27 0.253
IoU [17] 0.60 0.63 0.01 0.51 0.30 0.02 -0.07 0.20 0.14 0.47 -0.09 -0.01 0.225
F-score [66] 0.58 0.09 0.05 0.33 0.03 0.06 0.16 0.34 0.27 0.25 0.01 0.34 0.208
SSFID [78] 0.71 0.74 -0.04 0.74 0.39 0.24 0.13 0.32 0.25 0.64 0.25 -0.02 0.363
UHD [77] 0.29 0.22 0.11 0.15 -0.04 0.18 0.41 0.55 0.13 0.18 0.25 0.33 0.231
(Ours) 0.73 0.21 0.60 0.63 0.31 0.51 0.83 0.65 0.77 0.80 0.69 0.08 0.567

Adjusted (Ours) 0.79 0.19 0.56 0.64 0.36 0.54 0.79 0.76 0.75 0.77 0.67 0.36 0.598

a. Pearson’s linear correlation coefficient.
MetricsObject No. 1 2 3 4 5 6 7 8 9 10 11 12 Overall
Chamfer Distance [8] 0.33 0.14 -0.09 0.43 -0.08 -0.06 -0.15 0.17 -0.04 0.24 -0.16 0.22 0.079
Point-to-Surface 0.42 0.39 0.14 0.59 0.11 0.05 -0.10 0.20 0.18 0.40 -0.11 0.18 0.205
Normal Difference 0.44 0.22 0.33 0.42 0.19 0.29 0.33 0.56 0.33 0.32 0.21 0.34 0.331
IoU [17] 0.57 0.61 0.28 0.50 0.36 0.21 0.12 0.31 0.262 0.56 0.03 0.30 0.342
F-score [66] 0.47 0.25 0.20 0.52 0.21 0.11 0.07 0.36 0.30 0.42 -0.01 0.35 0.27
SSFID [78] 0.63 0.81 0.28 0.70 0.33 0.23 0.10 0.33 0.32 0.65 0.16 0.34 0.407
UHD [77] 0.38 0.20 0.11 0.32 0.13 0.35 0.41 0.60 0.06 0.27 0.37 0.35 0.296
(Ours) 0.79 0.25 0.57 0.59 0.36 0.56 0.83 0.79 0.69 0.69 0.83 0.24 0.598

Adjusted (Ours) 0.83 0.21 0.55 0.59 0.38 0.60 0.82 0.80 0.69 0.68 0.75 0.42 0.611

b. Spearman’s rank order correlation coefficient.
MetricsObject No. 1 2 3 4 5 6 7 8 9 10 11 12 Overall
Chamfer Distance [8] 0.25 0.14 -0.08 0.31 -0.04 -0.02 -0.09 0.15 0.013 0.19 -0.07 0.22 0.080
Point-to-Surface 0.33 0.30 0.07 0.45 0.10 0.08 -0.03 0.17 0.13 0.30 -0.01 0.16 0.171
Normal Difference 0.34 0.16 0.17 0.31 0.18 0.22 0.26 0.44 0.25 0.23 0.16 0.27 0.250
IoU [17] 0.42 0.44 0.24 0.37 0.28 0.22 0.14 0.26 0.20 0.41 0.10 0.23 0.275
F-score [66] 0.37 0.17 0.14 0.42 0.15 0.11 0.09 0.28 0.23 0.34 0.01 0.30 0.216
SSFID [78] 0.48 0.62 0.24 0.51 0.25 0.24 0.12 0.29 0.26 0.48 0.17 0.23 0.322
UHD [77] 0.27 0.13 0.07 0.22 0.09 0.26 0.29 0.42 0.048 0.19 0.28 0.24 0.209
(Ours) 0.60 0.16 0.42 0.41 0.27 0.45 0.65 0.57 0.55 0.47 0.60 0.19 0.445

Adjusted (Ours) 0.64 0.14 0.40 0.41 0.29 0.48 0.63 0.59 0.55 0.45 0.57 0.29 0.453

c. Kendall’s rank order correlation coefficient.

Table 2: Correlations between different metrics and human annotation [36].

6 Limitations

Our methodology’s current limitations and potential improvements span several key areas

that pave the way for future enhancements. Initially, our reliance on mesh-based 3D shape

representations limits the variety and complexity of shapes we can model. Expanding to

include point clouds and voxels would capture more intricate geometries and improve the

versatility of our models. Additionally, our reality-referenced metric, based on analytic

methods, may not effectively capture the subtle human perceptions of fidelity. Implementing

few-shot learning techniques could dynamically adapt to individual variations in fidelity
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perception, providing a more nuanced assessment tool. Currently, the context within our

dataset is predefined, which might not reflect the full diversity of real-world scenarios. A

thorough analysis of context at both the dataset and metric levels in future studies would

enhance the generalizability and applicability of our method across a broader range of

environments. Lastly, our method currently lacks a mechanism for integrating direct human

feedback as it relies solely on a pre-annotated dataset for training. Incorporating online

reinforcement learning would allow us to utilize real-time feedback to continuously fine-

tune both the metric and the reconstruction results, likely improving system responsiveness

and increasing user satisfaction by aligning outputs more closely with human evaluative

standards. These improvements are crucial for advancing the capabilities and accuracy of

3D reconstruction technologies.
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representation of the urban environment and forest environment on mood and level of procras-

tination. International Journal of Environmental Research and Public Health, 17(14):5109,

2020.

[7] Yochai Blau, Roey Mechrez, Radu Timofte, Tomer Michaeli, and Lihi Zelnik-Manor. The

2018 pirm challenge on perceptual image super-resolution. In Proceedings of the European

Conference on Computer Vision Workshops, pages 334–355, Sep 2018.

[8] Gunilla Borgefors. Distance transformations in arbitrary dimensions. Computer vision, graphics,

and image processing.

22

https://www.gobotree.com/
https://sketchfab.com/


[9] Abdullah Bulbul, Tolga Capin, Guillaume Lavoué, and Marius Preda. Assessing visual quality
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[75] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Matthew Johnson, Jingjing Shen, Nikola
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